摘要
基于哈密尔顿系统的二维弹性波方程,结合离散空间高阶偏导数的NAD算子和离散时间导数的辛分部Runge-Kutta算法,获得八阶NAD-SPRK算法。针对该方法,从理论和数值计算两方面研究了其稳定性条件、数值频散和计算效率。数值结果表明:同四阶NSPRK算法、八阶Lax-Wendroff算法和八阶交错网格算法相比,八阶NAD-SPRK算法压制数值频散的能力显著优于传统数值计算方法,且具有最小的数值误差和最高的计算效率。
Based on the two dimensions elastic wave equation with the Hamiltonian system,an eighth-order NAD-SPRK algorithm is obtained by combining the NAD operator for higher order partial derivatives of discrete space and the symplectic partitioned Runge-Kutta algorithm of discrete time derivative.The stability conditions,numerical dispersion and computational efficiency of the algorithm are studied theoretically and numerically.The results show that compared with the fourth-order NSPRK algorithm,the eighth-order Lax-Wendroff algorithm and the eighth-order staggered grid algorithm,the eighth-order NAD-SPRK algorithm is significantly superior to the traditional numerical algorithm in suppressing the numerical dispersion,and has the minimum numerical error and the highest computational efficiency.
作者
陈丽
朱兴文
张朝元
Chen Li;Zhu Xingwen;Zhang Chaoyuan(College of Engineering,Dali University,Dali,Yunnan 671003,China;College of Mathematics and Computer,Dali University,Dali,Yunnan 671003,China)
出处
《大理大学学报》
2022年第12期1-7,共7页
Journal of Dali University
基金
国家自然科学基金项目(41664005,41464004,51809026)
云南省地方本科高校基础研究联合专项资金项目(202001BA070001-082,2017FH001-006)。
关键词
弹性波方程
NAD算子
稳定分析
数值频散
计算效率
elastic wave equation
NAD operator
stability analysis
numerical dispersion
computational efficiency