期刊文献+

一种基于压力测点报警等级的供水管网泄漏区域识别方法 被引量:3

A leakage zone identification method for water distribution networks based on the alarm level of pressure sensors
下载PDF
导出
摘要 当供水管网发生泄漏报警后,由于相邻节点之间泄漏报警信号的相似性,直接采用报警信号进行精确的泄漏节点识别是困难的,因此提出了一种基于测点报警等级的泄漏区域识别方法。首先,在泄漏范围内生成用于训练和测试的泄漏残差样本,随后将各个测点的残差值按区间转化为报警等级从而形成报警等级样本。将训练样本中报警等级相同的节点合并为一个节点组并作为类别标签。采用枚举法,利用欧式距离和测试样本对样本的泄漏量间隔及报警等级间隔进行优化。通过示例管网考察了该方法的可行性。结果表明,相较于以往基于测点报警特征的泄漏区域识别方法,该方法可以有效的减小候选泄漏区域的面积。 When a leakage event triggers the leakage alarms,due to the similarity of leakage alarm characteristics between the adjacent nodes,it is difficult to directly use the alarm characteristics to identify leakage nodes accurately.Therefore,this paper proposes a leakage zone identification method based on the leakage alarm level.For the first,the leakage residual samples for each node are generated within the range of leakage amount,then convert the residual values of each sensors into the alarm level.Nodes with the same alarm level sample are merged into a node group,and used as a category label.The euclidean distance and test samples are used to optimize the sample interval and alarm level interval by the enumeration method.A network is used to illustrated the proposed method.The results show that compared with the previous leakage zone identification method based on the leakage alarm,the proposed method can reduce the area of candidate leakage zone effectively.
作者 陈京钰 冯新 肖诗云 CHEN Jingyu;FENG Xin;XIAO Shiyun(Faculty of Infrastructur Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《给水排水》 CSCD 北大核心 2022年第10期173-179,共7页 Water & Wastewater Engineering
基金 国家自然科学基金(52079024) 中央高校基本科研业务费(DUT20LAB133)。
关键词 供水管网 压力测点 报警等级 泄漏区域识别 欧式距离 Water distribution networks Pressure sensors Leakage alarm level Leakage zone identification Euclidean distance
  • 相关文献

参考文献6

二级参考文献30

  • 1李树平,刘遂庆.城市给水系统[M].北京:中国建筑工业出版社,2012.
  • 2Mounce S R,Boxall J B,Machell J.Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows.[J]Journal of Water Resources Planning and Management,2010,136 (3):309.
  • 3Romano M,Kapelan Z,Savic D A.Bayesian-based online burst detection in water distribution systems[C]// Integrating Water Systems.London:CRC Press-Taylor & Francis Group,2010:331-337.
  • 4Nazif S,Karamouz M,Tabesh M,et al.Pressure management model for urban water distribution networks[J].Water Resources Management,2010,24:437.
  • 5Mounce S R,Mounce R B,Boxall J B.Identifying sampling interval for event detection in water distribution networks[J].Journal of Water Resources Planning and Management,2012,138(2):187.
  • 6Rossman LA.EPANET 2 user's manual[M].Cincinnati:National Risk Management Research Laboratory Office of Research and Development U S Environmental Protection Agency,2000.
  • 7Yang X S,Deb S.Cuckoo Search via levy flights[C]//World Congress on Nature & Biologically Inspired Computing.Coimbatore:IEEE,2009:210-214.
  • 8Valian E,Tavakoli S,Mohanna S,et al.Improved cuckoo search for reliability optimization problems[J].Computers & Industrial Engineering,2013,64(1):459.
  • 9Wang Q,Liu S,Wang H,et al.Multi-objective cuckoo search for the optimal design of water distribution systems[C]//Proceedings of the 2012 International Conference on Civil Engineering and Urban Planning,China.Yantai:American Society of Civil Engineers,2012:402-405.
  • 10Holland J H.Genetic algorithms and the optimal allocation of trials[J].SIAM Journal on Computing,1973,2(2):88.

共引文献38

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部