期刊文献+

基于ROS机器人的激光与视觉融合建图方法 被引量:1

Map-Building Method of Laser and Visual Information Fusion Based on ROS Robot
下载PDF
导出
摘要 针对移动机器人利用单一传感器信息在未知环境下进行同时定位与地图创建(SLAM)存在准确性低、信息丢失等问题,提出一种基于贝叶斯法则的单线激光雷达和深度相机信息结合的SLAM建图方法。充分利用由深度图像转化的伪激光雷达数据与激光雷达信息,按区分优先级的融合规则进行信息融合,在地图更新阶段,基于贝叶斯推理构建概率模型,对二维栅格地图进行更新。在真实场景下利用ROS机器人进行验证,实验结果表明多传感器融合所建地图与真实场景一致性较高,有效地提高了机器人的环境感知能力。 Aiming at the problems of low accuracy and information loss of mobile robot using single sensor information for simultaneous localization and mapping(SLAM)in unknown environment.This paper presented a method of data fusion for single-line lidar and depth camera based on Bayesian rule estimation SLAM.The lidar information and pseudo-lidar data transformed from the depth image are fully utilized,and the information is fused according to the fusion rules of priority differentiation.In the map updating stage,the probability model is constructed based on Bayesian inference to update the two-dimensional raster map.In the real scene,ROS robot is used for verification.Experimental results show that the map built by multi-sensor fusion has a high consistency with the real scene,which effectively improves the robot′s environmental perception ability.
作者 姬鹏 高帅轩 JI Peng;GAO Shuai-xuan(School of Mechanical and Equipment Engineering,Hebei University of Engineering,Handan 056038,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第12期132-135,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 河北省引进留学人员资助项目(CL201704) 河北省高等学校科学技术研究项目(ZD2019023)。
关键词 传感器融合 贝叶斯法则 激光雷达 深度相机 sensor fusion Bayes laser radar depth vision
  • 相关文献

参考文献4

二级参考文献11

  • 1潘学军,王玉峰,庄严,王伟.基于改进角度直方图和最小二乘法的移动机器人地图构建[J].机器人,2003,25(z1):680-685. 被引量:1
  • 2胡春旭,熊枭,任慰,何顶新.基于嵌入式系统的室内移动机器人定位与导航[J].华中科技大学学报(自然科学版),2013,41(S1):254-257. 被引量:35
  • 3SMITH R, SELF M, CHEESEMAN E Estimating uncertain spa- tial relationships in robotics [M] //Autonomous Robot Vehicles. New York: Springer, 1990:167 - 193.
  • 4MURPHY K. Bayesian map learning in dynamic environments [C] //Proceedings of the Conference on Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 1999:1015 - 1021.
  • 5MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: a factored solution to the simultaneous localization and mapping prob- lem [C]//Proceedings of the 18th National Conference on Artificial Intelligence. Cambridge, MA: MIT Press, 2002:593 - 598.
  • 6THRUN S, BURGARD W, FOX D. Probabilistic Robotics [M]. Cam- bridge: MIT Press, 2005:77 - 88.
  • 7MORAVEC H E Sensor fusion in certainty grids for mobile robots [J]. AI Magazine, 1988, 9(2): 61 - 75.
  • 8DOUCET A, DE FREITAS, GORDAN N. Sequential Monte Carlo Methods in Practice [M]. New York: Springer Verlag, 2001:496 - 497.
  • 9李久胜,李永强,周荻.基于EKF的SLAM算法的一致性分析[J].计算机仿真,2008,25(6):155-160. 被引量:14
  • 10李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480. 被引量:346

共引文献119

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部