期刊文献+

基于FaceNet的煤矿人员考勤识别 被引量:2

Coal Mine Personnel Attendance Recognition Based on FaceNet
下载PDF
导出
摘要 煤矿人员出入井考勤系统的准确性不仅是煤矿安全的必要保障,而且也可为突发事故的及时救援提供考量依据。通过传统的考勤模式加上生物特征识别可有效提高煤矿人员出入井识别效率。针对煤矿生产环境中存在煤尘、粉尘污染人员面部等问题,采用MTCNN人脸检测方法对煤矿人员出入井进行人脸检测,并结合FaceNet人脸识别方法识别出入井人员信息。经实验表明,该方法可有效、实时地监控人员考勤,避免了一人多卡等违规现象。 The accuracy of the attendance system is not only the necessary guarantee of coal mine safety,but also can provide the basis for the timely rescue of emergencies.Through the traditional attendance pattern and biometric identification can effectively improve the efficiency of coal mine personnel access identification.In view of coal dust,dust,water pollutants and other problems in coal mine production environment,MTCNN face detection method is used to detect the face of coal mine personnel entering and exiting wells,and FaceNet face recognition method is used to identify the information of coal mine personnel entering and exiting wells.The experiment shows that this method can effectively and real-time monitor personnel attendance,and avoid violations such as one person having more than one card.
作者 刘宝玉 亢健铭 范树凯 LIU Baoyu;KANG Jianming;FAN Shukai(Heilongjiang Longmei Qitaihe Mining Co.,Ltd.,Qitaihe 154600,China;School of Electrical and Control Engineering,Heilongjiang University of Science and Technology,Harbin 150022,China)
出处 《煤炭技术》 CAS 北大核心 2022年第9期189-191,共3页 Coal Technology
关键词 煤矿考勤 生物特征 人脸检测 人脸识别 coal mine attendance biometric face detection face recognition
  • 相关文献

参考文献6

二级参考文献30

共引文献45

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部