摘要
通过构造两个特殊的矩阵,给出非负矩阵最大特征值的上下界估计式,且这些估计式只和非负矩阵的元素有关,计算方便.同时对非负矩阵最大特征值下界估计式的单调递增性和上界估计式的单调递减性进行了证明.在此基础上,利用单调有界准则证明了上下界估计式极限的存在性.最后将所得结果与经典的Frobenius界值进行比较,数值算例表明估计的有效性和精确性.
By constructing two special matrices,the upper and lower bound estimates of the maximum eigenvalues of the nonnegative matrices are given,and these estimates are only related to the elements of the nonnegative matrices,which are easy to compute.The monotonically increasing property of the lower bound estimates and monotonically decreasing property of the upper bound estimates are also proved.On this basis,the existence of the limits of the upper and lower bound estimates is proved by using the monotone bounded criterion.Finally,the results are compared with the classical Frobenius bounds,and a numerical example is presented to show the validity and accuracy of the estimates.
作者
钟琴
赵春燕
王妍
牟谷芳
ZHONG Qin;ZHAO Chun-yan;WANG Yan;MOU Gu-fang(Department of Mathematics,Sichuan University Jinjiang College,Meishan Sichuan 620860,China;College of Applied Mathematics,Chengdu University of Information Technology,Chengdu Sichuan 610225,China)
出处
《高校应用数学学报(A辑)》
北大核心
2022年第4期484-490,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金面上项目(11471225)
四川省教育厅自然科学研究项目(18ZB0364)。
关键词
非负矩阵
最大特征值
上界
下界
nonnegative matrix
maximum eigenvalue
upper bound
lower bound