期刊文献+

基于数学形态学去噪的光伏发电限电异常数据识别算法 被引量:15

An Abnormal Data Recognition Algorithm Based on Mathematical Morphology Denoising Theory for PV Power Generation
下载PDF
导出
摘要 光伏发电领域特有的限电异常数据,由于其来源于不确定的、突发的强制弃风弃光操作,完全无规律可循,使得依赖数据分布假设或经验模型的传统异常数据识别算法无法对其进行有效识别。为提高光伏限电异常数据的识别率,提出一种基于数学形态学去噪的限电异常数据识别算法。该算法将限电异常数据作为原始数据的噪声信号,对原始数据本身的分布特性没有任何要求,只需将原始数据转换为二值图像,通过膨胀腐蚀等数学形态学去噪的基本运算即可对限电异常数据进行自适应识别。通过实际采集数据进行仿真,结果表明,与传统异常数据识别算法相比,该算法可显著提高限电异常数据的识别率,从而验证了其在限电异常数据识别领域的适用性。 The curtailment data in PV power generation is a special type of abnormal data. Traditional abnormal data recognition algorithms rely on the data distribution hypothesis or empirical model and cannot work well for recognizing this special type of abnormal data. Aiming to address with this problem, an abnormal data recognition algorithm based on the mathematical morphology denoising theory was proposed in this paper. The proposed abnormal data recognition algorithm took the curtailment data as the noise signal of the original data, so it did not have any requirements on the distribution characteristics of the original data. It only needed to transform the original data into a binary image, and then adaptively identify the curtailment data through the mathematical morphology denoising operations such as dilation and erosion.The simulation results show that compared with the traditional abnormal data recognition algorithms, the proposed algorithm has significantly improved the recognition rate of the curtailment data, which verifies the applicability of the proposed algorithm in the field of the curtailment data recognition.
作者 郝颖 冬雷 王丽婕 廖晓钟 HAO Ying;DONG Lei;WANG Lijie;LIAO Xiaozhong(Department of Automation,Beijing Information Science and Technology University,Haidian District,Beijing 100192,China;Department of Automation,Beijing Institute of Technology,Haidian District,Beijing 100081,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2022年第21期7843-7854,共12页 Proceedings of the CSEE
基金 北京信息科技大学“勤信人才”培育计划(QXTCPC202107) 北京信息科技大学科研基金项目(2021XJJ17)。
关键词 光伏发电 限电数据 异常数据识别 数学形态学去噪 膨胀腐蚀 PV power generation curtailment data abnormal data recognition algorithm mathematical morphology denoising dilation and erosion
  • 相关文献

参考文献17

二级参考文献264

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1261
  • 2岳勇,田考聪.数据缺失及其填补方法综述[J].预防医学情报杂志,2005,21(6):683-685. 被引量:30
  • 3赵磊,李国和,马现峰.基于支持向量机的缺失数据补齐方法[J].计算机工程与应用,2006,42(36):207-208. 被引量:5
  • 4日本太阳光发电协会编.太阳能光伏发电系统的设计与施工[M].北京:科学出版社,2006.
  • 5GB/T9535地面用晶体硅光伏组件设计鉴定和定型[S].
  • 6李胜茂.2010--2015年中国太阳能光伏发电产业投资分析及前景预测报告[R].北京:中投顾问产业研究中心,2010.
  • 7Park J,Liang W,Choi J,et al.A probabilistic reliability evaluation of a power system including solar/photovoltaic cell generator[C]//IEEE Power & Energy Society General Meeting.Calgary,Canada:IEEE,2009:1-6.
  • 8Dobakhshari A S,Fotuhi-Firuzabad M.A reliability model of large wind farms for power system adequacy studies [J]. IEEE Transactions on Energy Conversion,2009,24(3):792-801.
  • 9Duignan R,Dent C J,Mills A,et al.Capacity value of solar power[C]//Power and Energy Society General Meeting.San Diego,USA: IEEE,2012:1-6.
  • 10Esram T,Chapman P L.Comparision of photovoltaic array maximum power point tracking techniques[J].IEEE Trans. on Energy Conversion,2007,22(2):439-449.

共引文献531

同被引文献242

引证文献15

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部