摘要
为了改善基本麻雀搜索算法在处理优化问题时存在的收敛精度不高、速度慢和易陷入局部极小值的问题,提出一种改进搜索机制的单纯形法引导麻雀搜索算法。首先,针对发现者搜索过程随机性过高的问题,改进发现者搜索机制,提高算法收敛速度和稳定性;其次,改进麻雀搜索算法侦察机制,提高算法跳出局部极小值能力;最后,对每一次迭代适应度较差的部分个体采用单纯形法的相关操作,提高算法搜索能力。在8个基准测试函数以及部分CEC2014测试函数上的性能对比,同时结合Wilcoxon秩和检测分析,验证了改进算法的鲁棒性。
In order to improve the problems of low convergence accuracy,slow speed and easy to fall into local minimum when the basic sparrow search algorithm deals with optimization problems,this paper proposes a simplex-guided sparrow search algorithm with improved search mechanism.Firstly,to solve the problem that the randomness of the finder search process is too high,the finder search mechanism is improved to improve the convergence speed and accuracy of the algorithm.Secondly,the sparrow search algorithm's reconnaissance mechanism is improved to improve the ability of the algorithm to jump out of the local minimum.Finally,the related operation of the simplex method is used for some individuals with poor fitness in each iteration to improve the searching ability of the algorithm.Performance comparison on eight benchmark test functions and some CEC2014 test functions and Wilcoxon rank sum test analysis verify the robustness of the improved algorithm.
作者
刘成汉
何庆
LIU Cheng-han;HE Qing(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处
《计算机工程与科学》
CSCD
北大核心
2022年第12期2238-2245,共8页
Computer Engineering & Science
基金
贵州省科技计划项目重大专项(黔科合重大专项字[2018]3002,黔科合重大专项字[2016]3022)。
关键词
麻雀搜索算法
发现者
侦察机制
单纯形法
sparrow search algorithm
discoverer
surveillance mechanism
simplex method