期刊文献+

考虑动力学模型系统误差补偿的智能车GNSS/IMU组合定位算法 被引量:2

An Algorithm Considering Kinematic Model Systematic Error Compensation for Intelligent Vehicle GNSS/IMU Integrated Positioning
原文传递
导出
摘要 为了解决智能车动态组合定位过程中,因动力学模型与实际模型之间存在偏差导致滤波精度下降的问题,针对智能车全球导航卫星系统(GNSS)/惯性测量单元(IMU)组合定位系统,结合非线性预测滤波(NPF)和自适应滤波的优点,提出了一种考虑动力学模型系统误差实时估计和补偿的自适应非线性预测滤波(ANPF)算法。首先,根据NPF算法原理,通过最小化预测观测残差与系统误差的加权平方和,估计动力学模型系统误差;其次,结合自适应滤波原理,利用状态预测残差向量构造自适应因子,设计了一种自适应扩展卡尔曼滤波(AEKF)算法,用于估计系统状态向量,并通过自适应因子抑制动力学模型系统误差和线性化误差对系统状态估计精度的影响,克服NPF对系统状态估计精度有限的缺陷;再次,对动力学模型系统误差的估计误差和由动力学模型系统误差引起的系统噪声的等效协方差阵进行了分析和推导,以补偿动力学模型系统误差对系统状态估计的影响;最后,通过车载GNSS/IMU组合定位系统试验,从算法精度、鲁棒性和实时性方面对提出的算法和其他滤波算法的性能进行了验证和对比分析。研究结果表明:提出的自适应算法继承了NPF算法简易性和高实时性的优点,同时克服了NPF算法估计精度有限的缺陷,具有较好的滤波解算精度,水平定位精度小于1.0 m,算法单次平均执行时间约为0.013 9 ms,在精度和实时性的平衡方面显著优于其他滤波方法。 To solve the problem of decreasing filtering accuracy owing to the deviation between the kinematic and actual models during intelligent vehicle dynamic integrated positioning, by combining the advantages of nonlinear predictive filtering(NPF) and adaptive filtering, an adaptive nonlinear predictive filtering(ANPF) algorithm that considers the real-time estimation and compensation of the kinematic model systematic error is proposed for intelligent vehicle global navigation satellite system(GNSS)/inertial measurement unit(IMU) integrated positioning systems. First, according to the principle of the NPF algorithm, the systematic error of the kinematic model is estimated by minimizing the weighted square sum of the predicted observation residual and the system error. Second, combined with the principle of adaptive filtering, an adaptive extended Kalman filtering(AEKF) algorithm is designed to estimate the system state vector by using the state prediction residual vector to construct an adaptive factor. The influence of the kinematic model systematic error and linearization error on the system state estimation accuracy was suppressed by the adaptive factor to overcome the defect of NPF on the limited system state estimation accuracy. Thirdly, the estimation error of the kinematic model systematic error and the equivalent covariance matrix of the system noise caused by the kinematic model systematic error are analyzed and derived to compensate for the influence of the kinematic model systematic error on the system state estimation. Finally, by performing experiments using the vehicle GNSS/IMU integrated positioning system, the performance of the proposed algorithm and other filtering algorithms are verified and compared from the perspectives of accuracy, robustness, and real-time performance. The results show that the proposed adaptive algorithm inherits the advantages of simplicity and high real-time performance of the NPF algorithm, overcomes the disadvantage of the limited estimation accuracy of the NPF algorithm, and has good filtering accuracy. The horizontal positioning accuracy is less than 1.0 m, and the average time of a single execution is approximately 0.013 9 ms, which is significantly better than the other filtering methods in terms of the balance between accuracy and real-time performance.
作者 魏文辉 赵祥模 葛振振 WEI Wen-hui;ZHAO Xiang-mo;GE Zhen-zhen(School of Automobile,Chang'an University,Xi'an 710064,Shaanxi,China;School of Information Engineering,Chang'an University,Xi'an 710064,Shaanxi,China)
出处 《中国公路学报》 EI CAS CSCD 北大核心 2022年第9期185-194,共10页 China Journal of Highway and Transport
基金 国家重点研发计划项目(2019YFB1600500) 中国博士后科学基金项目(2021M692739) 中央高校基金研究计划资金项目(300102220206) 陕西省自然科学基础研究计划项目(2022JQ-224) 城市公共交通智能化交通运输行业重点实验室开放课题(220122200078)。
关键词 汽车工程 智能车定位 非线性滤波 GNSS/IMU组合定位 动力学模型系统误差 自适应估计 automotive engineering intelligent vehicle positioning nonlinear filtering GNSS/IMU integrated positioning kinematic model systematic error adaptive estimation
  • 相关文献

参考文献3

二级参考文献32

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:311
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:146
  • 3李斌,王春燕,吴涛,宋飞,丁振松.中国智能公路磁诱导技术研究进展[J].公路交通科技,2004,21(11):66-69. 被引量:8
  • 4Yang Y X, He H B, Xu G C. Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy 2001; 75(2): 109-116.
  • 5Wang J, Stewart M P, Tsakiri M. Adaptive Kalman illtering for integration of GPS with GLONASS and INS. Birmingham: IUGG/IAG. 1999; 18-31.
  • 6Ding W, Wang J, Rizos C, et al. Improving adaptive Kalman estimation in GPS/INS integration. The Journal of Navigation 2007; 60(3): 517-529.
  • 7Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS. Journal of Geodesy 1999; 73(4): 193-203.
  • 8Yang Y X, Xu T. An adaptive Kalman filter based on Sage windowing weights and variance components. The Journal of Navigation 2003; 56(2): 231-240.
  • 9Jazwinski A H. Stochastic processes and filtering theory. New York: Mathematics in Science and Engineering, Academic Press, 1970.
  • 10Mehra R K. On the identification of variances and adaptive Kalman filtering. IEEE Transactions on Automatic Control 1970; 15(2): 175-184.

共引文献87

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部