期刊文献+

含分布式电源的配电网三阶段协同优化调度 被引量:2

Three-stage collaborative optimal dispatching of distribution network with distributed power generation
原文传递
导出
摘要 针对含分布式电源配电网的实际运行情况,根据主动配电网的设备调度时间尺度和调节次数,建立一种基于日前阶段、日中阶段以及实时阶段的配电网三阶段优化调度流程,解决分布式电源出力不确定性的影响。在日前阶段,采用配电网动态重构,依据分布式电源出力预测的持续分量进行网络拓扑结构变换。在日中阶段,采用列和约束生成算法处理分布式电源出力的不确定性,建立配电网的鲁棒优化模型,对有载调压变压器、分组投切电容器档位进行再调整,确定下一级在线控制的分布式电源和储能的运行基点。在实时阶段,建立时间解耦的储能平抑分布式电源出力不确定性模型,利用分布式电源和储能可以快速响应特点,在实时风光场景下进行根节点功率波动的平抑。改进的IEEE33节点算例验证了所确定模型的有效性。通过多时间尺度的协调调度,可以有效降低分布式电源出力不确定性带来的影响,提高配电网运行稳定性。 In view of the actual operation of the distribution network with distributed power,and based on the time scale and adjustment times of each equipment in the active distribution network,a three-stage optimization dispatching process for the distribution network based on the day-ahead,intra-day,and real-time phases was established aiming at solving the impact of the uncertainty of distributed power.In the day-ahead stage,the dynamic reconfiguration of the distribution network was adopted,and the transformation of the network topology was mainly based on the continuous component of the distributed power output prediction.In the intraday stage,the column and constraint generation algorithm was used to deal with the uncertainty of distributed power output,establish a robust optimization model of the distribution network,and re-adjust the positions of the on-load tapping transformer and group switching capacitors to determine the next operating base point of distributed power and energy storage with level online control.In the real-time stage,a time-decoupled energy storage model was established to stabilize the output uncertainty of distributed power sources,and the characteristics of rapid response by distributed power and energy storage were used to stabilize root node power fluctuations in real-time wind and solar scenarios.The improved IEEE33 node calculation example verified the validity of the determined model.The results showed that the coordinated scheduling of multiple time scales could effectively reduce the impact of the uncertainty of distributed power output and improve the stability of the distribution network.
作者 杨思 王艳 赵斌成 韩学山 刘冬 孙东磊 YANG Si;WANG Yan;ZHAO Bincheng;HAN Xueshan;LIU Dong;SUN Donglei(Economic&Technology Research Institute,State Grid Shandong Electric Power Company,Jinan 250021,Shandong,China;Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University),Jinan 250061,Shandong,China)
出处 《山东大学学报(工学版)》 CAS CSCD 北大核心 2022年第5期55-69,共15页 Journal of Shandong University(Engineering Science)
基金 国网山东省电力公司经济技术研究院资助项目(52062519000V)。
关键词 分布式电源 配电网 动态重构 鲁棒优化 数据监测 distributed power distribution network dynamic reconfiguration robust optimization data monitoring
  • 相关文献

参考文献11

二级参考文献128

  • 1周劼英,张伯明,尚金成,何南强,姚佳,范斗,程满,王丹,李予州,刘明松.河南电网实时调度系统若干功能与算法[J].电力系统自动化,2006,30(2):99-104. 被引量:25
  • 2陈歆技,丁同奎,张钊.蚁群算法在配电网故障定位中的应用[J].电力系统自动化,2006,30(5):74-77. 被引量:93
  • 3刘蔚,韩祯祥.基于时间区间的配电网重构[J].电力系统自动化,2006,30(10):33-38. 被引量:24
  • 4汪海宁,苏建徽,丁明,张国荣.光伏并网功率调节系统[J].中国电机工程学报,2007,27(2):75-79. 被引量:116
  • 5SHEN Wei, WU Wenchuan, SUN Hongbin, et al. A wave filtering based electric load curve decomposition method for AGC[C]// Proceedings of 2010 International Conference on Power System Technology, October 24 -28, 2010, Hangzhou,.
  • 6MIRANDA M S, DUNN R W. One-hour-ahead wind speed prediction using a Bayesian methodology[C]// Proceedings of IEEE Power Engineering Society General Meeting, June 18-22, 2006, Montreal, Canada.
  • 7EI-FOULY T H M, EI-SAADANY E F, SALAMA M M A. One day ahead prediction of wind speed using annual trends [C]// Proceedings of IEEE Power Engineering Society General Meeting, June 18-22, 2006, Montreal, Canada.
  • 8SENJYU T, YONA A, URASAKI N, et al. Application of recurrent neural network to long-term-ahead generating power forecasting for wind power generator[C]// Proceedings of IEEE Power Systems Conference and Exposition, October 29- November 1, 2006, Atlanta, GA, USA: 1260-1265.
  • 9LI S. Wind power prediction using recurrent multilayer perceptron neural networks[C]// Proceedings of IEEE Power Engineering Society General Meeting, July 13-17, 2003, Toronto, Canada: 2325 -2330.
  • 10FAN S S, LIAO J J R, YOKOYAMA R R, et al. Forecasting the wind generation using a two-stage network based on meteorological information [ J ]. IEEE Trans on Energy Conversion, 2009, 24(2): 474-482.

共引文献479

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部