摘要
为解决蚕丝经化学接枝增重处理后,接枝率难以直接测定以及现有的热分析法检测耗时长、不适用于批量化快速检测等问题,提出了采用近红外光谱技术对蚕丝接枝率进行快速测定的方法。应用近红外光谱法结合化学计量学软件,选择偏最小二乘法,从光谱预处理、最佳主因子数选择以及建模谱区选择3个方面优化建立甲基丙烯酰胺接枝蚕丝的接枝率预测模型,得到所建模型的内部预测准确率为91.03%。使用19个已知参比值但未参与建模的样本对模型的稳健性进行验证,对预测值和参比值进行配对t检验,在给定显著水平α为0.05条件下,模型预测结果与称重法测试结果不存在显著性差异。结果表明,近红外光谱技术可为蚕丝接枝率的定量测定提供一种快速有效的分析方法。
The grafting ratio of silk after chemical graft weight gaining treatment is difficult to measure directly,and the existing thermogravimetric analysis method is time-consuming and not suitable for rapid mass detection.In order to solve these problems,a rapid detection method by using near infrared spectroscopy(NIRS)was proposed.Based on NIRS combined with stoichiometry software,the partial least squares was selected as a correction method to establish prediction model of grafting ratio of methylacrylamide grafted silk.The model was optimized from three aspects of spectral pretreatment,modeling bands,and the optimal numbers of principal factor.The internal prediction accuracy of the established model is 91.03%.19 samples not involved in the modeling were used for the robustness verification,and paired t-test of predicted and reference values showed that at a given significant levelα=0.05,there was no significant difference between the results obtained from model prediction and weighing method.Results show that the NIRS technique can provide a rapid and effective method for the quantitative detection of silk grafting ratio.
作者
王瑞
司银松
芦浩浩
杲爽
傅雅琴
WANG Rui;SI Yinsong;LU Haohao;GAO Shuang;FU Yaqin(College of Textile Science and Engineering(International Institute of Silk),Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China;Zhejiang Institute of Mechanical&Electrical Engineering,Hangzhou,Zhejiang 310018,China;School of Materials Science and Engineering,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China)
出处
《纺织学报》
EI
CAS
CSCD
北大核心
2022年第11期29-34,共6页
Journal of Textile Research
关键词
近红外光谱
蚕丝
接枝率
甲基丙烯酰胺
定量分析
偏最小二乘法
near infrared spectroscopy
silk
grafting ratio
methacrylamide
quantitative analysis
partial least squares