摘要
令G=(V,E)是一个图.图G的(F,F_(d))-分解是指将G的顶点集合V(G)分解为2个子集V_(1)和V_(2),使得子图G[V_(1)]是森林,G[V_(2)]是最大度至多为d的森林.本文证明了每个不含4-圈和7-圈的环面图有(F,F_(3))-分解.
Let G=(V,E)be a graph.An(F,F_(d))-partition of a graph G is to divide the vertex set V(G)into two sets V_(1) and V_(2) such that G[V_(1)] is a forest and G[V_(2)] is the forest with bounded maximum degree at most d.In this paper,we prove that every toroidal graph without 4-cycles and 7-cycles admits an(F,F_(3))-partition.
作者
陈敏
朱嫒娜
王艺桥
CHEN Min;ZHU Aina;WANG Yiqiao(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua,Zhejiang,321004,P.R.China;School of Management,Beijing University of Chinese Medicine,Beijing,100029,P.R.China)
出处
《数学进展》
CSCD
北大核心
2022年第6期979-988,共10页
Advances in Mathematics(China)
基金
国家自然科学基金(Nos.11971437,12071048)
浙江省自然科学基金(No.LY19A010015)。
关键词
环面图
森林分解
权转移
圈
toroidal graph
forest partition
discharging
cycle