摘要
本文考虑了一个带有随机收益和扰动项的一般连续时风险模型,其中,投资组合的价格收入过程被描述为几何非负Lévy过程,扰动项是一个实值随机过程,表示保险公司的额外净损失.在理赔额序列满足[J.Korean Statist.Soc.,2012,41(2):213-224]中的相依结构且共同分布是次指数分布的条件下,本文建立了有限时破产概率的渐近估计公式.所得的结果表明,具有次指数理赔额的模型中,有限时破产概率的渐近行为对于该相依结构和轻尾扰动项不敏感.
Consider a general continuous-time risk model with stochastic return and perturbation,in which the price process of the investment portfolio is described as a geometric nonnegative Levy process,and the diffusion perturbation is modelled by a real-valued stochastic process reflecting the additional net loss of an insurer.This paper establishes an asymptotic formula for the finite-time ruin probability under the condition that the subexponential claims follow the dependence structure proposed in[J.Korean Statist.Soc.,2012,41(2):213-224].Our obtained result shows that the asymptotic behavior of the finite-time ruin probability is insensitive to such a dependence structure and the light-tailed perturbation in the risk model with subexponential claims.
作者
杨洋
陈少颖
程东亚
YANG Yang;CHEN Shaoying;CHENG Dongya(School of Statistics and Data Sciences,Nanjing Audit University,Nanjing,Jiangsu,211815,P.R.China;School of Mathematical Sciences,Soochow University,Suzhou,Jiangsu,215006,P.R.China)
出处
《数学进展》
CSCD
北大核心
2022年第6期1119-1131,共13页
Advances in Mathematics(China)
基金
国家社会科学基金(No.22BTJ060)
教育部人文社会科学研究规划基金(No.20YJA910006)
江苏省自然科学基金(No.BK20201396)
江苏省高校自然科学研究重大项目(No.19KJA180003)
江苏省研究生科研与实践创新计划项目(No.KYCX21_1939)。
关键词
一般连续时风险模型
有限时破产概率
渐近行为
次指数分布
相依结构
general continuous-time risk model
finite-time ruin probability
asymptotic behavior
subexponential distribution
dependence structure