期刊文献+

依赖参数的无穷小Strebel点

The Infinitesimal Strebel Points Depending on Parameters
原文传递
导出
摘要 给定单位圆Δ内一个有界可测函数μ(z),且∥μ∥∞=k∈(0,1/3),本文考察μ_(t)(z)=tμ(z)的Teichmüller等价类[μ_(t)].我们找到了一族全纯依赖于复参数t的有界可测函数ν_(t)∈[μ_(t)],使得ν_(t)(z)的无穷小Teichmüller等价类[ν_(t)]B均是无穷小Strebel点,且使得t↦[ν_(t)]B是单位圆Δ到无穷小Teichmüller空间Z的全纯映射. Given a bounded measurable functionμ(z)on the unit diskΔ,with∥μ∥∞=k∈(0,1/3),for every t∈Δ,setμt(z)=tμ(z).Then there exists ν_(t)∈[μ_(t)],which is the Teichmüller equivalent class of μ_(t),such that the infinitesimal Teichmüller equivalent class[ν_(t)]B of ν_(t) is an infinitesimal Strebel point,moreover t↦νt is holomorphic and t↦[ν_(t)]B is also a holomorphic mapping fromΔto the infinitesimal Teichmüller space Z.
作者 黄华鹰 HUANG Huaying(School of Mathematical Sciences,Anhui University,Hefei,Anhui,230601,P.R.China)
出处 《数学进展》 CSCD 北大核心 2022年第6期1145-1151,共7页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11771266)。
关键词 TEICHMÜLLER空间 拟共形映射 Strebel点 无穷小Strebel点 全纯运动 Teichmüller space quasiconformal map Strebel points infinitesimal Strebel points holomorphic motions
  • 相关文献

参考文献2

二级参考文献25

  • 1沈玉良,刘晓毅.全纯二次微分的一些注记(英文)[J].数学进展,2004,33(4):471-476. 被引量:2
  • 2沈玉良.万有Teichmuller空间中测地线的不唯一性[J].数学进展,1995,24(3):237-243. 被引量:3
  • 3Guowu Yao.Is there always an extremal Teichmüller mapping?[J]. Journal d’Analyse Mathematique . 2004 (1)
  • 4Zhong Li.Strebel differentials and Hamilton sequences[J]. Science in China Series A: Mathematics . 2001 (8)
  • 5Clifford J. Earle,Zhong Li.Isometrically embedded polydisks in infinite dimensional Teichmüller spaces[J]. The Journal of Geometric Analysis . 1999 (1)
  • 6V. Bo?in,N. Lakic,V. Markovi?,M. Mateljevi?.Unique extremality[J]. Journal d’Analyse Mathématique . 1998 (1)
  • 7Edgar Reich.The unique extremality counterexample[J]. Journal d’Analyse Mathématique . 1998 (1)
  • 8Kurt Strebel.On the existence of extremal Teichmueller mappings[J]. Journal d’Analyse Mathématique . 1976 (1)
  • 9S. L. Krushkal’.Extremal quasiconformal mappings[J]. Siberian Mathematical Journal . 1969 (3)
  • 10Li Z.Strebel di?erentials and Hamilton sequences. Sci China Ser A-Math . 2001

共引文献1

  • 1胡韵,沈玉良.Strebel点[J].中国科学(A辑),2009,39(3):299-305.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部