期刊文献+

基于自适应Kalman滤波的智能电网假数据注入攻击检测 被引量:13

Detection of False Data Injection Attack in Smart Grid via Adaptive Kalman Filtering
下载PDF
导出
摘要 研究了一种针对智能电网中假数据注入攻击的有效检测方法.假数据注入攻击可以保持攻击前后残差基本不变,绕过传统的不良数据检测技术.首先基于电网模型,分析了假数据注入攻击的攻击特性,针对噪声统计特性未知且无迹Kalman滤波(Unscented Kalman filter,UKF)不稳定的现象,提出了自适应平方根无迹Kalman滤波改进算法.基于状态估计值,结合中心极限定理提出检测算法,并与欧几里得检测方法、巴氏系数检测方法进行比较.最后,仿真表明本文所提检测算法的优越性. In this paper,an effective detection method for false data injection attack in smart grid is studied.False data injection attack can keep the residual unchanged before and after the attack and bypass the traditional bad data detection technology.Firstly,based on the grid model,the attack characteristics of false data injection attack are analyzed.Aiming at the phenomenon that the noise statistical characteristics are unknown and the unscented Kalman filter(UKF)is unstable,an effective detection method for false data injection attack is proposed.An improved algorithm of adaptive square root unscented Kalman filter is proposed.Based on the state estimation and the central limit theorem,the algorithm is compared with Euclidean method and bayonet coefficient method.Finally,the simulation shows the superiority of the algorithm.
作者 罗小元 潘雪扬 王新宇 关新平 LUO Xiao-Yuan;PAN Xue-Yang;WANG Xin-Yu;GUAN Xin-Ping(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004;Vehicle Measurement,Control and Safety Key Laboratory of Sichuan Province,Xihua University,Chengdu 610039;School of of Electronic,Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240)
出处 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期2960-2971,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61873228,62103357) 河北省教育厅青年基金(QN2021139) 河北省自然基金(F2021203043) 汽车测控与安全四川省重点实验室开放基金(QCCK2022-006)资助。
关键词 智能电网 虚假数据注入攻击 攻击检测 自适应平方根无迹卡尔曼滤波 Smart grid false data injection attack detection adaptive square-root unscented Kalman filter
  • 相关文献

参考文献6

二级参考文献49

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2李强,周京阳,于尔铿,刘树春,王磊.基于混合量测的电力系统状态估计混合算法[J].电力系统自动化,2005,29(19):31-35. 被引量:57
  • 3Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83.
  • 4Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985.
  • 5Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69.
  • 6Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514.
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482.
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 9Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438.
  • 10Xiong K, Chan C, Zhang H S. Detection of satellite atti- tude sensor faults using the UKF. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 480-491.

共引文献326

同被引文献116

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部