期刊文献+

Performance Analysis of an Integrated Supercritical CO_(2) Recompression/Absorption Refrigeration/Kalina Cycle Driven by Medium-Temperature Waste Heat

原文传递
导出
摘要 A novel power and cooling cogeneration system which combines a supercritical CO_(2) recompression cycle(SCRC), an ammonia-water absorption refrigeration cycle(AARC) and a Kalina cycle(KC) is proposed and investigated for the recovery of medium-temperature waste heat. The system is based on energy cascade utilization, and the waste heat can be fully converted through the simultaneous operation of the three sub-cycles. A steady-state mathematical model is built for further performance study of the proposed system. When the exhaust temperature is 505℃, it is shown that under designed conditions the thermal efficiency and exergy efficiency reach 30.74% and 61.55%, respectively. The exergy analysis results show that the main exergy destruction is concentrated in the heat recovery vapor generator(HRVG). Parametric study shows that the compressor inlet pressure, the SCRC pressure ratio, the main compressor and the turbine I inlet temperature, and the AARC generator pressure have significant effects on thermodynamic and economic performance of the combined system. The findings in this study could provide guidance for system design to achieve an efficient utilization of medium-temperature waste heat(e.g., exhaust heat from gas turbine, high-temperature fuel cells and internal combustion engine).
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期2051-2067,共17页 热科学学报(英文版)
基金 supported by the Shandong Provincial Natural Science Foundation of China(No.ZR2019MEE045) the National Natural Science Foundation of China(No.51776203) the Key Project of National Natural Science Foundation of China(No.61733010)。
  • 相关文献

参考文献4

二级参考文献25

  • 1Mills DR. Advances in solar thermal electricity technology. Solar Energy, vol.76, pp19-31, (2004).
  • 2Xu F; Goswami DY; Bhagwat SS. A combined power/cooling cycle. Energy, vol.25, pp233-46, (2000).
  • 3X.R. Zhang; H. Yamaguchi; K. Fujima; M. Enomoto; N. Sawada. Theoretical analysis of a thermodynanmic cycle for power and heat production using supercritical carbon dioxide. Energy, vol. 32, pp591-599, (2007).
  • 4X.R. Zhang; H. Yamaguchi. An experimental study on evacuated tube solar collector using supercritical CO2. Applied Thermal Engineering, vol.28, pp1225-1233, (2008).
  • 5Narendra Singh; S.C. Kaushik; R.D. Misra. Exergy analysis of a solar thermal power. Renewable Energy, vol.19, pp135-143, (2000).
  • 6Richard Petela. Exergy of undiluted thermal radiation. Solar Energy, vol.74, pp469-488, (2003).
  • 7Arif Hepbasli. Exergetic modeling and assessment of solar assisted domestic hot water tank integrated ground-source heat pump systems for residences. Energy and Buildings, vol.39, pp1211-1217, (2007).
  • 8W. Van Gool. Energy policy: fairy tales and factualities, in: O.D.D. Soares, A. Martins da Cruz, G. Costa Pereira, I.M.R.T. Soares, A.J.P.S.Reis (Eds.), Innovation and Technology-Strategies and Policies, Kluwer, Dordrecht. pp93-105, (1997).
  • 9Douglas M. Robinson; Eckhard A. Groll. Efficiencies of transercrical CO2 cycles with and without an expansion turbine. International Journal Refrigeration, vol.21(7), pp577-589, (1998).
  • 10Mehmet Kanoglu; Ibrahim Dincer; Yunus A. Cengel. Exergy for better environment and sustainability. Environ Dev Sustain. DOI 10.1007/s10668-008-9162-3.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部