摘要
Diesel from direct coal liquefaction(DDCL) is a new type of engine alternative energy. But its hydrocarbon composition and physicochemical properties are quite different from those of Petro diesel. In this study, a premixed constant volume combustion chamber(CVCC) system with soot particle sampling devices was built. The soot particles in the spray flame were sampled and photographed by thermophoresis probe and transmission electron microscope(TEM). An automatic processing code based on Matlab software was developed to process the TEM images and extract the micro morphology parameters of the soot particles. This study has systematically studied the effects of sampling location, injection pressure, ambient density and oxygen concentration on the micro morphology of soot particles. The ambient density refers to the initial gas density in the CVCC. The results showed that various morphologies and sizes of soot particles coexisted in the upstream of the spray flame. During the evolution of soot particles from upstream to downstream in the flame, the size of soot aggregates gradually decreased, while the maturity of soot aggregates increased. With the increase of injection pressure, ambient density and oxygen concentration, the average sizes of soot aggregates and primary soot particles decreased, but the fractal dimensions of soot aggregates increased gradually. Under the same combustion condition and in-flame sampling location, the average projection area, gyration radius and primary soot diameter of soot aggregates produced by DDCL were significantly lower than those of Petro diesel. The structure of soot particles from DDCL was more compact than that of Petro diesel.
基金
supported by the National Key Research and Development Program of China(Grant No.2017YFE0130800)
National Natural Science Foundation of China(Grant No.91741122)。