期刊文献+

Reliability study of super-ellipsoid DEM in representing the packing structure of blast furnace 被引量:1

原文传递
导出
摘要 In industrial blast furnaces(BFs),the investigations involving the flow behaviors of particles and the resultant burden structure are essential to optimize its operation stability and energy consumption.With the advance of computing capability and mathematical model,the discrete element method(DEM)specialized in characterizing particle behavior has manifested its power in the investigation of BFs.In the framework of DEM,many particle models have been developed,but which model is more suitable for simulating the particle behaviors of BFs remains a question because real particles in BFs have large shape and size dispersity.Among these particle models,the super-ellipsoid model possesses the ability to change shape flexibly.Therefore,the focus of this study is to investigate whether the super-ellipsoid model can meet the requirement of authenticity and accuracy in simulating the behaviors of particles with large shape and size dispersity.To answer this question,a simplified BF charging system composed of a hopper and a storage bin is established.The charging process and the final packing structure are analyzed and compared between experiments and simulations with different shape indexes.The results show that super-ellipsoid particles have prominent advantages over spherical particles in terms of representing the real BF particles,and it can more reasonably reproduce the flow behaviors and packing structure of experimental particles.The computation cost of super-ellipsoid particles is also acceptable for engineering applications.Finally,the micro-scale characteristics of packing structure is analyzed and the single-ring charging process in industry-scale BF using super-ellipsoid particles is conducted.
出处 《Particuology》 SCIE EI CAS CSCD 2022年第11期72-81,共10页 颗粒学报(英文版)
基金 This researchwas financially supported by the National Natural Science Foundation of China(grant No.22078283).
  • 相关文献

参考文献2

二级参考文献5

共引文献32

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部