期刊文献+

基于Kalman的室内伪卫星定位算法研究 被引量:1

Research on indoor pseudo satellite positioning algorithm based on Kalman
下载PDF
导出
摘要 针对普通抗差卡尔曼滤波算法在用于伪卫星室内定位时难以保证算法阈值最优性等问题,对基于抗差卡尔曼滤波的室内伪卫星定位算法进行了进一步研究,将遍历算法的思想与普通抗差卡尔曼率波模型相结合,提出了一种基于遍历抗差卡尔曼滤波的优化算法以用于提高伪卫星室内定位的精度。该算法可在给定范围内自主进行寻找比较,得到最适合该测量环境的算法阈值,从而确保算法模型中阈值的最优性,提高最终优化结果的精度。研究表明,相较于滤波前,X轴、Y轴方向平均标准差数值分别降低了39.8%与40.2%,X-Y平面平均标准差数值降低了39%,与普通卡尔曼模型的滤波性能进行比较,遍历抗差卡尔曼模型有着更好的优化效果。 Aiming at the problem that the common robust Kalman filter algorithm is difficult to ensure the threshold optimality of ordinary robust Kalman filter algorithm when used for indoor positioning of pseudopatellite, this paper studies the indoor positioning algorithm of pseudopatellite based on robust Kalman filter. Combining the idea of ergodic algorithm with the ordinary robust Kalman filter, an optimization algorithm is is proposed. The algorithm can find and compare, independently within a given range, the algorithm threshold most suitable for the measurement environment. It insures optimality, and improves the accuracy of final optimization results. The research shows that compared with before filtering, the average standard deviation of X and Y axes is reduced by 39.8% and 40.2% respectively, and the average standard deviation of X-Y plane is reduced by 39%. Compared with the filtering performance of the ordinary Kalman model, an ergodic robust Kalman model has better optimization effects.
作者 沈运哲 王田虎 黄涛 王保强 SHEN Yunzhe;WANG Tianhu;HUANG Tao;WANG Baoqiang(School of electrical information engineering,Jiangsu University of Technology,Changzhou Jiangsu 213001,China;Technical Development Department of CRRC Nanjing Puzhen Vehicle Co.,Ltd,Nanjing 211800,China)
出处 《激光杂志》 CAS 北大核心 2022年第10期102-105,共4页 Laser Journal
基金 江苏省自然基金(No.BK20150247) 江苏省实践创新项目(No.XSJCX21_43) 中车南京浦镇车辆有限公司委托课题(No.KY30720210001)。
关键词 伪卫星 室内定位 卡尔曼滤波 残差 运动轨迹 pseudosatellite indoor positioning Kalman filter residual error motion trajectory
  • 相关文献

参考文献8

二级参考文献39

共引文献83

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部