期刊文献+

基于FastText模型的农业短文本分类研究 被引量:1

Classification of Agricultural Short Texts Based on FastText Model
下载PDF
导出
摘要 本文提出基于FastText分类语言模型来解决农业短文本分类问题。在数据处理好类别的情况下,利用实验对12万条农业数据集进行实验。并探究与典型深度语言模型(TextRNN、TextCNN、TextDPCNN、Transformer)进行对比分析其中的分类准确率和分类处理响应时间。实验结果得出结论,基于深度学习的FastText模型的农业短文本分类效果最好,FastText模型对比其他模型的准确率、精确率、召回率和F1值提高了1%~4%。FastText模型可以对中文农业短文本分类处理速度更好,更优于其他典型深度语言模型算法。 This paper proposes a FastText classification language model to solve the problem of agricultural short text classification.Under the condition of data classification,experiments were carried out on 120,000 agricultural data sets.And compared with typical deep language models(TextRNN,TextCNN,TextDPCNN and Transformer),the classification accuracy rate and response time of classification processing are analyzed.The results show that the FastText model based on deep learning has the best effect on agricultural short text classification,and the FastText model improves the accuracy,accuracy,recall rate and F1 value by 1%~4%compared with other models.FastText model can classify Chinese agricultural short texts faster than other typical deep language model algorithms.
作者 王福健 魏霖静 安昭先 刘志祖 WANG Fujian;WEI Linjing;AN Zhaoxian;LIU Zhizu(School of Information Science and Technology,Gansu Agricultural University,Lanzhou Gansu 730070;Jilin Engineering Normal University,Changchun Jilin 130052;Linxia Agricultural Technology Extension Service Center,Linxia Gansu 731100)
出处 《软件》 2022年第10期27-29,共3页 Software
基金 2020年甘肃农业大学研究生教育研究项目(2020-19) 2021年度兰州市人才创新创业项目(2021-RC-47) 2021年教育部产学研合作协同育人项目(202102326036)。
关键词 农业短文本分类 文本分类 语言模型 FastText classification of agricultural short texts text classification language model FastText
  • 相关文献

参考文献10

二级参考文献39

  • 1万磊,佟鑫,盛明伟,秦洪德,唐松奇.Softmax分类器深度学习图像分类方法应用综述[J].导航与控制,2019,0(6):1-9. 被引量:62
  • 2唐光前.基于·NET Remoting的分布式异构数据库一站式检索系统模型研究[J].现代图书情报技术,2006(8):37-41. 被引量:3
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 4Dai Y B,Loh T E.A new formula for Chinese text segmentation incorporating contextual information[].Proceedings of the nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.1999
  • 5Ogawa Y,Matsuda T.Overlapping statistical segmentation for effective indexing of Japan text[].Proceedings of the th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.1997
  • 6Chen Aitao,He Jianzhang,Xu Liangjie.Chinese text retrieval without using a dictionary[].Proceedings of the th Annual International ACM SIGI R Conference on Research and Development in Inf ormation Retrieval.1997
  • 7Nie J Y,Gao J,Zhang J,et al.On the use of words and n-grams for Chinese information retrieval. Fif th International Workshop on Information Retrieval with Asian Languages, I RAL-2000 [ C ] . 2000
  • 8Cavnar W B.Using an n-gram-based document representation with a vector processing retrieval model[].Proceedings of the Third Text Retrieval Conf erence ( TREC- ).1994
  • 9Lua K T,Gan G W.An application of information theory in Chinese word segmentation[].Computer Processing of Chinese &Oriental Languages.1994
  • 10何秀丽,刘次华.Logistic回归中的加权最小二乘估计[J].应用数学,2004,17(S1):144-147. 被引量:3

共引文献79

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部