期刊文献+

基于改进型LS-SVM技术的煤泥浮选智能优化控制方法 被引量:1

Intelligent Optimization Control Method of Slime Flotation Based on Improved LS-SVM Technology
下载PDF
导出
摘要 针对现有的煤泥浮选控制算法公式复杂、评估时间长等问题,文章提出了一种基于多重最小二乘支持向量机(LS-SVM)的浮选精煤灰分综合评估模型;首先,建立了基于LS-SVM的单一煤种的单一估计模型,并利用引力搜索算法对其内部参数进行了优化;其次,设计了模型更新策略,解决了单一模型精度下降的问题;此外,为了解决模型失配问题,还研究了由多个单一模型组成的多个LS-SVM模型以及模型切换机制;最后,进行了工业试验和评价,实验结果表明,煤泥浮选的评估值与实际值的平均相对误差为3.32%,综合模型的估计精度和适应性能够满足工业要求。 Aiming at the problems of complex formulas and long evaluation time of the existing slime flotation control algorithms,a comprehensive evaluation model of flotation cleaned coal ash based on multiple least squares support vector machine(LS-SVM)is proposed in this paper.Firstly,a single estimation model of single coal type based on the LS-SVM is established,and a gravity search algorithm is used to optimize the internal parameters.Secondly,the model updating strategy is designed to solve the problem that the accuracy of the single model decreases.In addition,in order to solve the problem of model mismatch,the multiple LS-SVM models composed of multiple single models and the model switching mechanism are also studied.Finally,the industrial test and evaluation are carried out.The experimental results show that the average relative error between the evaluation value and the actual value of slime flotation reaches 3.32%,and the estimation accuracy and adaptability of the comprehensive model can meet the industrial requirements.
作者 郭伟 贾永飞 赵欣 GUO Wei;JIA Yongfei;ZHAO Xin(Wangjialing Coal Preparation Plant,China Coal Huajin Group Co.,Ltd.,Yuncheng 043300,China)
出处 《计算机测量与控制》 2022年第12期119-124,共6页 Computer Measurement &Control
关键词 煤泥浮选 最小二乘支持向量机 引力搜索算法 综合评估模型 洁净煤灰含量 slime flotation least squares support vector machine gravity search algorithm comprehensive evaluation model clean coal ash content
  • 相关文献

参考文献24

二级参考文献228

共引文献130

同被引文献23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部