期刊文献+

驾驶压力影响因素与识别方法研究综述

A Review of Influencing Factors and Identification Methods of Driver Stress
下载PDF
导出
摘要 高强度的驾驶压力会对驾驶人的情绪、决策及行为产生负面影响,可能导致交通事故,并对驾驶人的健康状况造成长期影响。本文借助CiteSpace软件对驾驶压力研究进行可视化分析,进一步从驾驶人自身因素、车辆内部和外部因素这3方面总结驾驶压力影响因素,并归纳整理驾驶压力识别方法。总结发现:交通拥堵、道路复杂性及新技术使用等驾驶环境因素是引发或增加驾驶压力的主要因素;非职业驾驶人易受车辆外部环境的影响,职业驾驶人易因工作产生负面情绪,导致驾驶压力增加。驾驶压力识别主要基于主观测评量表、驾驶行为分析及生理数据分析等方法开展研究,其中,基于生理数据的识别方法因其较高的识别精度和准确度被认为在驾驶压力识别领域具有明显的优势。从研究趋势来看,未来研究需重视社会环境以及多因素叠加对驾驶压力的影响,特别关注职业驾驶人及新技术的影响,以及如何采用多模态数据融合方法实现实时监测,以提高驾驶压力识别的精度。 High driver stress has a negative impact on drivers'emotions,decisions,and behaviors,which may lead to traffic accidents and have long-term effects on the driver's health.In this paper,the CiteSpace software was used to visualize the research on driver stress.Further,the influencing factors of driver stress were summarized from the driver's own factors,vehicle internal and external factors,and then the driver stress identification methods were summarized.In conclusion,driving environment factors such as traffic congestion,road complexity,and the use of new technologies are the main factors that trigger or increase driver stress.Non-professional drivers are easily affected by the external environment of the vehicle,while professional drivers are prone to negative states due to work,which in turn increases driver stress.Driver stress identification is mainly based on a subjective observation scale,driving behavior analysis,physiological data analysis,and other methods.Among them,the recognition method based on physiological data is considered to have obvious advantages in the field of driving stress recognition due to its high recognition precision and accuracy.From the perspective of research trends,future research needs to pay attention to the social environment and the impact of multiple factors on driver stress,with special attention to the impact of professional drivers and new technologies,and how to use multi-modal data fusion methods to achieve real-time monitoring to improve the accuracy of driver stress identification.
作者 杨柳 杨莹 宋允洲 张宇 YANG Liu;YANG Ying;SONG Yun-zhou;ZHANG Yu(School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China;Institute of Rail Transit,Tongji University,Shanghai 201804,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第6期40-50,67,共12页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(72001163,51979214)。
关键词 智能交通 驾驶压力 影响因素 生理数据 识别方法 intelligent transportation driver stress influencing factors physiological data identification method
  • 相关文献

参考文献12

二级参考文献157

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部