摘要
传统因子分析过程中会舍弃部分信息,影响涉及个体类问题的分析结果.根据公共因子累积方差贡献率,改进了公共因子个数选取方法,舍弃对个体影响极低的因子.改进思想既利用了降维思想,也将信息丢失降至最低.经过实例对比分析,改进的因子分析在处理个体类问题上优于传统因子分析,改进方法有效.
In the traditional factor analysis process,some information will be discarded,which will affect the analysis results involving individual problems.According to the cumulative variance contribution rate of common factors,the method of selecting the number of common factors is improved,and the factors with extremely low influence on individuals are discarded.The improvement idea not only utilizes the idea of dimensionality reduction,but also minimizes the loss of information.Through the comparative analysis of examples,the improved factor analysis is superior to the traditional factor analysis in dealing with individual problems,and the improved method is effective.
作者
崔方送
凌丹丹
CUI Fang-song;LING Dan-dan(Anhui Huangmei Opera Art Vocational College,Anqing 246052,Anhui,China)
出处
《兰州文理学院学报(自然科学版)》
2022年第6期16-20,共5页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金
安徽省教育厅高等学校省级质量工程项目(2020jyxm0304)。
关键词
因子分析
个体类问题
公共因子个数选取模型
信息丢失
factor analysis
individual problem
common factor number selection model
information loss