期刊文献+

基于网络超链接信息熵的节点重要性序结构演化建模分析 被引量:3

The Model to Analyses of Node Importance Order Structure Evolution Based on Network Hyperlink Information Entropy
下载PDF
导出
摘要 动态复杂网络在时空演化过程中,网络节点重要性层内交互关系和层间耦合关系可以更为准确对时序网络节点序结构演化进行分析.本文提出基于网络超链接信息熵的节点重要性序结构演化模型.分析时序网络层内节点超链接信息熵重要性排序结果,得到时序网络节点相邻时间层与跨时间层节点重要性排序模型.节点超链接信息熵总结相邻时间层与跨时间层节点相似性耦合效应.通过SIR(Susceptible Infected Recovered)模型检验节点传播效率进行实证网络仿真,结果与经典时序网络模型相比,本文模型Kendall’sτ值在各时间层均有提高,最高为11.310%. In the time evolution of dynamic complex networks,the intra-layer interaction relationship and inter-layer coupling relationship of the importance of network nodes can be more accurately analyzed for the evolution of the node order structure of the time ordered networks.In this paper,a model of node importance order structure evolution based on network hyperlink information entropy is proposed.Through the results of the importance ranking of node hyperlink information entropy within the temporal network layer,the importance ranking model of nodes in the adjacent temporal layer and across temporal layers of the temporal network is analyzed.The entropy of node hyperlink information summarizes the coupling effect of similarity between adjacent temporal layers and inter-temporal layers.An empirical network simulation was conducted to check the node propagation efficiency by SIR(Susceptible Infected Recovered)model.Compared with the classical temporal network model,the Kendall’sτvalue of this model was improved in all time layers,with the highest value of11.310%.
作者 胡钢 牛琼 许丽鹏 卢志宇 过秀成 HU Gang;NIU Qiong;XU Li-peng;LU Zhi-yu;GUO Xiu-cheng(School of Management Science and Engineering,Anhui University of Technology,Maanshan,Anhui 243032,China;School of Transportation,Southeast University,Nanjing,Jiangsu 210096,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第11期2638-2644,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.71772002) 安徽省自然科学基金(No.2108085MG236) 安徽省高校自然科学研究项目(No.KJ2021A0385) 安徽省高校研究生科学研究项目(No.YJS20210356)。
关键词 动态时序网络 超链接信息熵 节点重要性 序结构 层内相似 层间耦合 dynamic temporal networks hyperlink information entropy node importance ordered structure intralayer similarity interlayer coupling
  • 相关文献

参考文献7

二级参考文献61

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66.
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proeeedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 3Kempe D, Kleinberg J, Tardos L. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2003: 137-146.
  • 4Leskovec J, Krause A, Guestrin C, et al. Cost-effective out- break detection in networks//Proeeedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:420-429.
  • 5Chen Wei, Wang Ya-Jun, Yang Si-Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207.
  • 6Estavez Pablo A, Vera P, Saito K. Selecting the most influential nodes in social networks//Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, USA, 2007:2397-2402.
  • 7Chen Wei, Wang Chi, Wang Ya-Jun. Scalable influence maximization for prevalent viral marketing in large-scale social networks//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2010:1029-1038.
  • 8Chen Wei, Yuan Yi-Fei, Zhang Li. Scalable influence maxi- mization in social networks under the linear threshold model //Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010:88-97.
  • 9Chen Wei, Collins A, Cummings R, et al. Influence maximi- zation in social networks when negative opinions may emerge and propagate//Proceedings of the llth SIAM International Conference on Data Mining. Mesa, USA, 2011:379 -390.
  • 10Narayanam R, Narahari Y. A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 2010, 8(1): 130- 147.

共引文献133

同被引文献47

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部