期刊文献+

无条件稳定FETD方法中亚网格技术的研究

Research on Subgridding Technology in Unconditionally Stable FETD Method
下载PDF
导出
摘要 本文在时域有限元(Finite-Element Time-Domain,FETD)方法中实现了一种新型亚网格技术,并通过空间滤模(Spatial Modes Filtering,SMF)发展为无条件稳定亚网格FETD(Subgridding SMF-FETD,SSMF-FETD)方法.本文给出了FETD中亚网格技术的具体实施方案,包括粗细网格交界处粗网格棱边的编号方案、系统矩阵的建立过程以及亚网格FETD(Subgridding FETD,S-FETD)方法的系统迭代方案.亚网格技术的引入在一定程度上会破坏系统矩阵的稀疏度,但基于有限元框架下建立的系统矩阵依然保持对称正定或半正定特性.因此,可以直接将SMF方法应用到S-FETD方法中.通过广义特征值分解获得S-FETD系统矩阵的不稳定模式,并修改其矩阵方程,进而得到SSMF-FETD方法.S-FETD方法能够有效减少未知量数目,在此基础上数值结果表明,SSMF-FETD可以有效扩大时间步长并保持结果准确,从而进一步提升计算效率.在面对含有复杂精细结构的问题时,所提方法具有较高的有效性和准确性. A subgridding technology is implemented in the finite-element time-domain(FETD)method,and with spatial modes filtering(SMF)method further developed into the unconditionally-stable subgridding SMF-FETD(SSMF-FETD)method.The specific implementation scheme of the subgridding technology in FETD is given,including the numbering scheme of the edges of the coarse grid at the junction of coarse and fine grid regions,the establishment process of the system matrices,and the system iteration scheme of the subgridding FETD(S-FETD)method.The introduction of subgridding technology will destroy the sparsity of the system matrix to a certain extent,but the system matrices based on the finite element framework still maintain the symmetric positive definite or positive semi-definite characteristics.Therefore,the SMF method can be directly applied to the subgridding FETD method.The unstable modes of the subgridding FETD system matrices are obtained through generalized eigenvalue decomposition,and the subgridding FETD matrix equation is modified to obtain the SSMF-FETD method.The S-FETD method can effectively reduce the number of unknowns.On this basis,numerical results show that the SSMF-FETD method can effectively expand the time step and maintain the accuracy of the results,which further improves the calculation efficiency.The proposed method has high effectiveness and accuracy when facing the problems with complex and fine structures.
作者 王祎心 魏兵 范凯航 李益文 魏小龙 WANG Yi-xin;WEI Bing;FAN Kai-hang;LI Yi-wen;WEI Xiao-long(School of Physics and Optoelectronic Engineering,Xidian University,Xi’an,Shaanxi 710071,China;Collaborative Innovation Center of Information Sensing and Understanding,Xidian University,Xi’an,Shaanxi 710071,China;Aeronautics Engineering College,Air Force Engineering University,Xi’an,Shaanxi 710038,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第11期2799-2805,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61901324,No.62001345) 中国博士后科学基金(No.2019M653548,No.2019M663928XB) 中央高校基本科研业务费(No.XJS200501,No.XJS200507,No.JB200501)。
关键词 时域有限元(Finite-Element Time-Domain FETD) 无条件稳定 特征值 特征模式 亚网格技术 空间滤模 finite-element time-domain(FETD) unconditionally stable eigenvalues eigenmodes subgridding technique spatial modes filtering
  • 相关文献

参考文献5

二级参考文献19

  • 1赵小莹,周乐柱.不同参量的二维介质电磁带隙的反射及传输特性研究[J].北京大学学报(自然科学版),2005,41(3):460-464. 被引量:4
  • 2黄志祥,吴先良.辛算法的稳定性及数值色散性分析[J].电子学报,2006,34(3):535-538. 被引量:6
  • 3赵鑫泰,马西奎.一种求解Maxwell方程组的无条件稳定时域精细积分法[J].电子学报,2006,34(9):1600-1604. 被引量:1
  • 4吕志清,安翔,洪伟.电磁散射的拉格朗日乘子区域分解算法[J].电子学报,2007,35(6):1069-1073. 被引量:3
  • 5郝彬.应用于时域有限差分方法的完全匹配层吸收边界[M].西安:西安电子科技大学,1998..
  • 6[1]T J Ellis,G M Rebeiz.MM-wave tapered slot antennas on micro machined photonic band gap dielectrics[A].IEEE MTT-S,Int.Microwave Symp.Dig[Z],1996.1157-1160.
  • 7[2]V Radisic,Y Qian,T Itoh.Broadband power amplifier using dielectric photonic band gap structure[J].IEEE Microwave Guided Wave Lett,1998,8(1):13-14.
  • 8[3]M P Kesler,J G Maloney,B L Shirley.Antenna design with the use of photonic band gap materials as all dielectric planar reflectors[J].Microwave Opt.Tech.Lett.,1996,11 (3):169-174.
  • 9[4]R Hillebrand,W Hergert.Band gap studies of triangular 2D photonic crystal with varying pore roundness[J].Solid State Communications,2000,115:227-232.
  • 10[5]M Sigalas,C M Soukoulis,E N Economou,et al.Photonic band gaps and defects in two dimensions[J].Studies of the transmission coefficient.Physical Review B,1993,48(19):14121-14126.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部