期刊文献+

时间离散的时滞三维K-型型竞争扩散系统的行波解

Traveling wave solutions in temporally discrete three-dimensional type-K competition diffusion systems with delays
下载PDF
导出
摘要 建立和分析了一类具有时滞的时间离散三维反应扩散系统当非线性项满足K-型竞争条件时行波解的存在性.利用交叉迭代方法和Schauder不动点定理将所研究的系统行波解的存在性问题转化为寻找系统的一对合适的上下解,并将所得结论应用到时滞三维K-型竞争扩散系统的时间离散化系统中. In this paper,we investigate the existence of traveling wave solutions for temporally discrete three dimensional reaction diffusion systems when the nonlinear terms satisfy the type-K competition.By using the cross iteration method and Schauder′s fixed point theorem,we reduce the existence of traveling wave solutions to look for a pair of upper and lower solutions for the systems.The obtained conclusions are applied to the temporally discrete three dimensional type-K competition diffusion system with delays.
作者 彭华勤 朱庆 Peng Huaqin;Zhu Qing(School of Mathematics and Statistics,Guangxi normal University,Guilin 541004,China)
出处 《纯粹数学与应用数学》 2022年第4期504-519,共16页 Pure and Applied Mathematics
基金 国家自然科学基金(12001125,12061016,11371107) 广西自然科学基金(2018GXNSFAA294084,2018GXNSFBA281140) 广西研究生教育创新计划项目(JGY2019030) 广西师范大学科研启动项目(2017BQ003,2018BQ001)。
关键词 K-型竞争 行波解 时滞 时间离散 上下解 type-K competition traveling wave solution delay temporally time upper-lower solution
  • 相关文献

参考文献3

二级参考文献21

  • 1谢元喜,唐驾时.A unified approach in seeking the solitary wave solutions to sine-Gordon type equations[J].Chinese Physics B,2005,14(7):1303-1306. 被引量:19
  • 2Wang M L. Solitary wave solution for Boussinesq equations[J]. Physics Letters A, 1995,199:162-172.
  • 3Parkes E J, Duffy B R. Travelling solitary wave solutions to a compound KdV-Burgers equation[J]. Physics Letters A, 1997,229:217-220.
  • 4Kudryashow N A. Exact solutions of the generalized kuramoto Sivashinsky equations[J]. Physics Letters A, 1990,147:287-292.
  • 5Yah C T. A simple transformation for nonlinear waves[J]. Physics Letters A, 1996,224:77-84.
  • 6Xie Y X, Tang J S. New solitary wave solutions to the KdV-Burgers equation[J]. International Journal of Theoretical Physics, 2005,44(3):293-301.
  • 7Miura M R. Backlund Transformation[M]. Berlin:Springer Verlag, 1978.
  • 8Lou S Y. Similarity solutions of KP equation[J]. Journal of Physics A, 1990,23:649-654.
  • 9HUANG J H, ZOU X F. Existence of travelling wave fronts of delayed reaction-diffusion systems without monotonicity[J]. Discret. Contin. Dyn. Syst., 2003, 9(4): 925-936.
  • 10Kot M. Discrete-time traveling waves: Ecological examples[J]. J. Math. Biol., 1992, 30(4): 413-436.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部