期刊文献+

基于日志信息的大规模网络异常读数检测方法

Large-Scale Network Abnormal Reading Detection Method Based on Log Information
下载PDF
导出
摘要 针对日志信息中数据规模较大不利于异常读数检测的问题,提出基于日志信息的大规模网络异常读数检测方法。引入抽象算法合并不同格式日志信息并提取其中统一的网络事件,获取融合日志信息,去除冗余数据,减轻计算负担;将日志信息降维处理,获取低维度数据用于后续检测;结合网络读数时间关联性和相邻网络读数空间关联性实施分阶段检测,完成大规模网络异常读数检测。实验结果表明,所提方法能够有效地提高检测率和检测准确率、降低误报率,节省检测时间,说明该方法具备较好的检测效果。 Aiming at the problem that the large scale of data in log information is not conducive to abnormal reading detection, a large-scale network abnormal reading detection method based on log information is proposed. Abstract algorithms were introduced to merge log information in different formats and extract unified network events, so as to obtain integrated log information, remove redundant data and reduce the computational burden;The dimensions of log information were reduced to obtain low-dimensional data for subsequent detection;Combined with the temporal correlation of network readings and the spatial correlation of adjacent network readings, phased detection was implemented to complete the detection of large-scale network abnormal readings. The experimental results show that the proposed method can effectively improve the detection rate and detection accuracy, reduce the false alarm rate, and save the detection time, which indicates that the method has a good detection effect.
作者 薛莹 金景峰 XUE Ying;JIN Jing-feng(Shaanxi Police Officer Vocational College,Xi'an Shaanxi 710021,China;Equipment Project Management Center of Army Equipment Department,Beijing 100072,China)
出处 《计算机仿真》 北大核心 2022年第10期420-424,共5页 Computer Simulation
关键词 日志信息 异常读数 信息融合 信息降维 时空关联性 Log information Abnormal readings Information fusion Information dimensionality reduction Spatiotemporal correlation
  • 相关文献

参考文献15

二级参考文献118

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部