期刊文献+

Effect of roughness on wettability and floatability:Based on wetting film drainage between bubbles and solid surfaces 被引量:1

下载PDF
导出
摘要 Wetting film thinning measurement was introduced to clarify the wettability and floatability of solid surfaces with varying roughness. The wettability was quantified using the contact angle measurement combined with the dynamic force microbalance test between solid surfaces and water droplets, while the floatability was investigated by the bubble-solid surface dynamic attachment observation and the induction time measurement. The results show that the water contact angles reduce(14.53°, 12.74°, and 6.71°)with the increase of glass surface roughness, while the water droplet-glass adhesion forces intensify(11.1, 19.1 and 19.2 μN) owing to the stable wetting film. The distortion of the contact surface and the Wenzel state are the causes. In contrast, the hydrophobized surfaces have the growing apparent contact angles(38.08°, 69.81°, and 81.01°), declining adhesion strength and shortening induction time(863, 352and 12 ms) along with the increasing surface roughness. The weak wettability and fine floatability on the rough hydrophobized surface is reflected in the fast wetting film drainage dynamics and three-phase contact formation, which may be attributed to the wetting film with short diameter on tiny rough nubs and the entrapped air in the grooves as a bridge between the bulk bubble and the solid surface.
出处 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1389-1396,共8页 矿业科学技术学报(英文版)
基金 supported by the National Nature Science Foundation of China(Nos.51904300,21978318,51920105007,and 52274278) the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2403).
  • 相关文献

参考文献2

二级参考文献29

  • 1李海普,胡岳华,王淀佐,徐兢.Effect of hydroxamic acid polymers on reverse flotation of bauxite[J].Journal of Central South University of Technology,2004,11(3):291-294. 被引量:10
  • 2KUOPANPORTTI H,SUORSA T,DAHL O,NIINIMAKI J. A model of conditioning in the flotation of a mixture of pyrite and chalcopyrite ores[J].International Journal of Mineral Processing,2000,(04):327-338.
  • 3KLIMPEL R R. Optimizing the industrial flotation performance of sulfide minerals having some natural floatability[J].International Journal of Mineral Processing,2000,(1-4):77-84.
  • 4XU M. Modified flotation rate constant and selectivity index[J].Minerals Engineering,1998,(03):271-278.
  • 5OLIVEIRA J F,SARAIVA S M,PIMENTA J S,OLIVEIRA A P A. Kinetics of pyrochlore flotation from Araxa mineral deposits[J].Minerals Engineering,2001,(01):99-105.
  • 6AGAR G E,CHIA J,REQUIS C L. Flotation rate measurements to optimize an operating circuit[J].Minerals Engineering,1998,(04):347-360.
  • 7CILEK E C. Estimation of flotation kinetic parameters by considering interactions of the operating variables[J].Minerals Engineering,2004,(01):81-85.doi:10.1016/j.mineng.2003.10.008.
  • 8SZLEIFER I,SHAUL A B,GELBERT W M. Chain statistics in micelles and bilayers:Effects of surface roughness and internal energy[J].Journal of Chemical Physics,1986,(09):5345-5358.
  • 9HOGG R. Characterriation of mineral surfaces[A].New York:Society of Mining Engineers of AIME,1980.492-524.
  • 10JAYCOCK M J,PARFITT G D. Chemistry of interfaces[M].Chichester,UK:Ellis Horwood Publications,1981.156-161.

共引文献11

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部