摘要
在基于反向传播(BackPropagation,BP)网络的非侵入式约化基方法(BP-RBM)的基础上,非侵入式约化基方法(Reduced basismethod,RBM)引入了长短期记忆神经网络(LongShort-TermMemory,LSTM),提出了基于LSTM网络的非侵入式约化基方法(LSTM-RBM).该网络在继承循环神经网络(RecurrentNeuralNetwork,RNN)的可记忆性,参数共享性,图灵完备性等特性的基础上,同时解决了RNN在长时间序列训练过程中存在的梯度消失和梯度爆炸问题.LSTM-RBM解决了BP-RBM无法准确求解的具有复杂非线性特性的非线性波问题,例如二维Navier-Stokes方程和海洋内孤立波问题.此外,在求解一般的非线性波问题中,该方法相比BP-RBM在处理由非线性性质产生的大梯度结构上更有优势.数值测试结果表明,相比于BP-RBM,该方法恢复的降阶解与高保真快照解的误差可以缩小10倍左右.
The non-intrusive reduction basis method based on Long Short-Term Memory network(LSTM-RBM)is proposed on the non-intrusive reduction basis method based on Back Propa-gation network(BP-RBM).The non-intrusive reduction basis method is introduced to LSTM network which inherits Recurrent Neural Network(RNN)'s memorability,parameter shar-ing,turing completeness and other characteristics,and solves the gradient vanishing and gradient explosion problems existing in the long sequence training of RNN.The problem that BP-RBM cannot solve the complex nonlinear wave equation accurately is solved,such as the two-dimensional Navier-Stokes equation and the ocean internal wave problem.More-over,in solving general nonlinear wave problems,this method is more advantageous than BP-RBM in dealing with large gradient areas.The results of numerical experiments showthat,compared with BP-RBM,the error between the reduced order solution recovered bythis method and the high-fidelity snapshot solution can be reduced ten times.
作者
郑淑雯
高振
袁春鑫
Zheng Shuwen;Gao Zhen;YuanChunxin(School of Mathematical Sciences,Ocean University of China,Qingdao 266100,China)
出处
《数值计算与计算机应用》
2022年第4期400-414,共15页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金(11871443)
山东省高等学校“青创科技计划”(2019KJI002)
中央高校基本科研业务费(202042004)资助.
关键词
非侵入式约化基方法
长短期记忆神经网络
非线性波方程
海洋内孤立波
Non-intrusive reduced basis method
Long Short-Term Memory network
Nonlinear wave equation
Solitary waves in the ocean