期刊文献+

基于改进的Vision Transformer杂草生长周期识别方法研究 被引量:1

Identification of agricultural weed growth cycle based on improved Vision Transformer
下载PDF
导出
摘要 通过对农业杂草生长周期的识别分类,达到精准除草的目的。通过使用多卷积模块,使得改进的Vision Transformer模型提取到更加丰富的特征和语义信息,实现对杂草图像生长周期的识别分类。实验结果表明,运用改进Vision Transformer网络模型比传统卷积神经网络识别准确率提升4%。 Through the identification and classification of the growth cycle of agricultural weeds,the purpose of accurate weeding can be achieved.Through the use of multi convolution module,the improved vision transformer model can extract richer feature and semantic information,and realize the recognition and classification of weed image growth cycle.The experimental results show that the recognition accuracy of the improved vision transformer network model is 4%higher than that of the traditional convolutional neural network.
作者 王贵参 杨承林 蒲佳佳 伍俊霖 王红梅 WANG Guishen;YANG Chenglin;PU Jiajia;WU Junlin;WANG Hongmei(School of Computer Science&Engineering,Changchun University of Technology,Changchun 130102,China)
出处 《长春工业大学学报》 CAS 2022年第6期712-718,共7页 Journal of Changchun University of Technology
基金 吉林省教育厅科学研究项目(JJKH20210752KJ)。
关键词 Vision Transformer 卷积神经网络 农业杂草 Vision Transformer convolutional neural network agricultural weed
  • 相关文献

参考文献4

二级参考文献92

共引文献88

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部