期刊文献+

基于特征融合的抽油机井检泵周期预测

Pump Detection Period Predicting of Pump Well Based on Feature Fusion
下载PDF
导出
摘要 检泵周期是反映抽油机井工作情况的重要指标,准确预测检泵周期对提高油井产能和经济效益具有重要意义。针对油田检泵周期预测准确率低等问题,提出一种基于特征融合抽油机井检泵周期预测方法。该方法引入SVR提取油田数据的静态特征,利用卷积神经网络学习油田数据的动态特征,引入多模态压缩双线性池化对静态特征和动态特征进行融合,利用判别模型训练融合特征实现检泵周期的准确预测。实验结果验证了该模型的有效性和可行性。 Pump detection period is an important index to reflect the working reliability of pumping wells. Accurate prediction of pump detection period is of great practical significance to improve oil well production efficiency and economic benefits. Aiming at the low accuracy of pump detection period prediction in oil field, a pump detection period prediction method based on feature fusion is proposed. This method introduces SVR to extract the static characteristics of oilfield data, reconstructs the characteristics of oilfield dynamic data, uses convolution neural network to learn the dynamic characteristics of oilfield data, introduces multi-modal compression bilinear pooling to fuse the static and dynamic characteristics, and uses discriminant model to train the fusion characteristics to realize the accurate prediction of pump detection cycle. The experimental results verify the effectiveness and feasibility of the model.
作者 张晓东 王栩颖 秦子轩 ZHANG Xiao-dong;WANG Xu-ying;QIN Zi-xuan(School of Computer Science and Technology,China University of Petroleum(East China),Qingdao 266580,China)
出处 《计算机与现代化》 2022年第12期60-66,共7页 Computer and Modernization
基金 国家自然科学基金资助项目(61801517) 中央高校基本科研业务费专项资金项目(19CX02029A,19CX02027A)。
关键词 特征提取 特征融合 检泵周期预测 支持向量回归 卷积神经网络 feature extraction feature fusion pump detection period predicting support vector regression convolutional neural network
  • 相关文献

参考文献10

二级参考文献63

共引文献379

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部