摘要
针对X光安检违禁品检测依赖数据标注,存在多姿态变化且小目标不易检出的问题,改进ResNet50网络,提出基于弱监督机制的X光安检违禁品检测模型。通过ScoreCAM算法,依靠图片类别标签实现可视化和违禁品定位,结合可变形卷积和空洞卷积,设计4种在主干网络不同位置添加可变形空洞卷积模块的网络结构,使卷积核的形态更贴近违禁品轮廓,提高违禁品特征的提取能力。仿真结果表明,该模型结果更加准确,能有效应对违禁品目标多姿态变化、遮挡、小目标漏检的技术难题。
For the X-ray security inspection of prohibited items detection relying on data annotation,there are problems including multiple postures change and small targets that are difficult to be detected.The ResNet50 network was improved and a prohibited items detection model based on weakly supervision mechanism was proposed.Based on ScoreCAM algorithm,visualization and prohibited items location was realized by image category labels.Combined with deformable convolution and dilated convolution,four network structures with deformable dilated convolution modules at different positions of the backbone network were designed.The convolution kernel shape was more similar to the contour of prohibited items and the extraction ability of prohibited items features was improved.Results of simulation experiments show that the proposed model is more accurate,which effectively solves the technical problems of multiple postures change,occlusion and small target missing detection of prohibited items targets.
作者
赵晴
张海刚
汤圣涛
毛亮
孙红星
杨金锋
ZHAO Qing;ZHANG Hai-gang;TANG Sheng-tao;MAO Liang;SUN Hong-xing;YANG Jin-feng(Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area,Shenzhen Polytechnic,Shenzhen 518055,China;School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,China;Elevator Inspection Institute 1,Hangzhou Special Equipment Inspection and Research Institute,Hangzhou 310051,China)
出处
《计算机工程与设计》
北大核心
2022年第12期3483-3492,共10页
Computer Engineering and Design
基金
深圳市科技计划基金项目(RCBS20200714114940262)
广东省普通高校重点领域专项基金项目(2020ZDZX3082)
深圳职业技术学院校级科研基金项目(6022310006K)
广东省科技厅农村科技特派员基金项目(KPT20200220)。
关键词
X光安检
弱监督
违禁品检测
小目标
空洞卷积
可变形卷积
遮挡
X-ray security check
weakly supervision
prohibited items detection
small targets
dilated convolution
deformable convolution
occlusion