摘要
为了研究碱的存在对苯溶液中2,4-二氯过氧化苯甲酰(DCBP)热分解特性的影响,使用绝热加速量热仪,对多组不同热惰性因子的30%(质量分数)DCBP/苯溶液以及混有NaOH溶液的30%DCBP/苯溶液进行热解实验,采用无模型方法进行热动力学计算,并结合动力学补偿效应对相应的反应模型进行了研究。结果表明:DCBP/苯溶液在333.15 K已发生热分解;加入NaOH后,DCBP/苯溶液活化能明显降低,反应模型也更加复杂,分解放热量和放热速率减小;随着碱浓度的增大,DCBP/苯溶液的热分解反应起始温度降低;NaOH的存在促进了DCBP/苯溶液的热分解,增加了其引发热失控的可能性,但降低了热失控的严重度。因此,在DCBP的使用、运输等工业过程中应控制温度,同时避免其与碱性物质的混合。
In order to study the effect of alkali on the thermal decomposition characteristics of 2,4-dichlorobenzoyl peroxide(DCBP)in benzene solution,the experiments of 30%DCBP/benzene solutions with different thermal inertia factors and 30%DCBP/benzene solutions mixed with NaOH/H2O were carried out by accelerating rate calorimeter,the thermokinetic calculation was carried out by model-free method,and corresponding reaction models were studied combined with kinetic compensation effect.The results showed that DCBP/benzene solutions began to decompose at 333.15 K.After adding alkali,the activation energy of DCBP/benzene solutions decreased,the reaction model of DCBP/benzene solutions was more complex and the decomposition heat release and heat release rate decreased.With the increase of alkali concentration,the onset temperature of thermal decomposition reaction of DCBP/benzene solutions was lower.The existence of NaOH promoted the thermal decomposition of DCBP/benzene solutions and increased the possibility of thermal runaway,but reduced its severity.In industrial processes such as the use and transportation of DCBP,the temperature should be controlled while avoiding mixing with alkalis.
作者
张兴赐
林吉超
丁炯
胡东芳
叶树亮
ZHANG Xingci;LIN Jichao;DING Jiong;HU Dongfang;YE Shuliang(Institute of Industry and Trade Measurement Technique,China Jiliang University,Hangzhou 310018,China;Shandong Jinte Safety Technology Company Limited,Taian 271028,China)
出处
《化学反应工程与工艺》
CAS
2022年第6期541-551,共11页
Chemical Reaction Engineering and Technology
基金
国家自然科学基金项目(22003059)
浙江省属高校基本科研业务费专项资金资助(2021YW15)。
关键词
绝热加速量热仪
2
4-二氯过氧化苯甲酰
动力学补偿效应
微分等转化率法
热动力学
accelerating rate calorimeter
2,4-dichlorobenzoyl peroxide
the kinetic compensation effect
differential isoconversional method
thermokinetics