摘要
本文研究在多斑块中带偏差变量和食饵扩散的耦合捕食者-食饵系统的周期性.应用图论和重合度理论,建立一些新的正周期解存在的充分条件.该充分条件与时滞无关,并与扩散网络的拓扑性质密切相关.最后,给出一个数值算例验证理论结果的有效性.
This paper is concerned with the periodicity of coupled predator-prey systems with deviating arguments and prey dispersal in multiple patches.By applying the graph theory and the coincidence degree theory,some novel sufficient conditions are established for the existence of positive periodic solutions.The sufficient criterion is delay-independent and closely related to topological properties of the dispersal network.Finally,a numerical example is also provided to illustrate the correctness of theoretical results.
作者
许琴
张春梅
陈慧凌
XU Qin;ZHANG Chunmei;CHEN Huiling(School of Mathematics,Southwest Jiaotong University,Chengdu 611756,China)
出处
《应用数学》
北大核心
2023年第1期176-189,共14页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China (11601445)
the Fundamental Research Funds for the Central Universities,PR China (2682020ZT109)
the Central Government Funds for Guiding Local Scientific and Technological Development (2021ZYD0010)。
关键词
正周期解
捕食者-食饵系统
重合度理论
图论
Positive periodic solution
Predator-prey system
Coincidence degree theory
Graph theory