摘要
为改善花生脱壳机的脱净率,利用SolidWorks软件建立脱壳装置三维模型,在EDEM中构建滚筒凹板筛式花生脱壳机脱壳装置的破碎仿真模型,为探究滚筒凹板筛花生脱壳机的工作性能,以高油花生新品种宇花14号为试验样本,通过颗粒替换建立花生荚果仿真模型,采用单因素试验法对花生脱壳结构性能进行仿真分析,分别探究滚筒转速、滚筒凹板筛间隙、喂入量对花生脱壳性能的影响。试验结果表明:在保证其他因素一定的条件下,滚筒转速越大,黏结键破碎数目越多,滚筒转速为290r/min时,黏结键破碎数最高,为21756;凹板筛间隙越大,黏结键破碎数目越少,凹板筛间隙为19mm时,黏结键破碎数目最高,为21047;随着喂入量的增加,黏结键破碎率先增加后减小。研究可为滚筒凹板筛式花生脱壳机械的设计与优化提供理论依据。
In order to improve the net removal rate of peanut sheller,the three-dimensional model of the sheller is established by using SolidWorks software,and the crushing simulation model of the sheller of the drum concave screen peanut sheller is constructed in edem.In order to explore the working performance of the drum concave screen peanut sheller,the peanut pod simulation model is established by particle replacement with the new high oil peanut variety Yuhua 14 as the test sample,the single factor test method was used to simulate and analyze the performance of peanut shelling structure,and the effects of drum speed,drum concave screen clearance and feeding amount on peanut shelling performance were explored respectively.The test shows that under the condition of certain other factors,the greater the drum speed is,the more the number of bond breaking is.When the drum speed is 290 r/min,the number of bond breaking is the highest,which is 21756;The larger the concave screen gap is,the less the number of bond broken is.When the concave screen gap is 19 mm,the number of bond broken is the highest,which is 21047;With the increase of feed rate,bond breakage first increased and then decreased.It provides a theoretical basis for the design and optimization of roller concave screen peanut shelling machine.
作者
张远东
王东伟
尚书旗
何晓宁
李冬杰
张春晓
Zhang Yuandong;Wang Dongwei;Shang Shuqi;He Xiaoning;Li Dongjie;Zhang Chunxiao(College of Mechanical and Electrical Engineering,Qingdao Agricultural University,Qingdao 266000,China)
出处
《农机化研究》
北大核心
2023年第3期152-158,共7页
Journal of Agricultural Mechanization Research
基金
国家现代农业产业技术体系专项(CARS-13)。
关键词
花生脱壳
滚筒凹版式
黏结键
运动仿真
peanut shelling
roller concave sieve
bonding
motion simulation