摘要
自然语言处理技术推动着智能债市的发展,其关键在于利用计算机充分挖掘债市数据中蕴含的特征和规律。这些特征的本质是对债市文本的数字化编码,可作为债市文本分类、债市舆情分析、债券智能问答等多种应用的计算机输入“语言”,是实现智能债市的基础。为了实现对债市文本特征的预提取,本文利用CBOW模型对大量债市文本进行训练,获得了首套债市领域专用的数字“词典”,填补了债券领域专用词向量的空白。该词向量利用文本的上下文信息,已经具备了一定的语义表达能力,不仅可以区分一字多义,还可以针对特定概念群进行类推。
作者
华娇娇
杜通
华云
Hua Jiaojiao;Du Tong;Tang Huayun
出处
《债券》
2022年第12期86-90,共5页
CHINA BOND