摘要
High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures.Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors,whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated.Here,based on quantum atomic matter waves confined by a two-dimensional optical lattice,we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space.The lattice confinement causes a decoupling between real-space and reciprocal dynamics,and provides a rigid coordinate frame for calibrating the wavevector accumulation of the matter wave.With that we achieve a stateof-the-art sensitivity of 2.30(8)×10^(-26) N/√Hz.Long-term stabilities on the order of 10^(-28) N are observed in the two spatial components of a force,which allows probing atomic Van der Waals forces at one millimeter distance.As a further illustrative application,we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment.Future developments of this method hold promise for delivering unprecedented atom-based quantum force sensing technologies.
矢量力的高精度测量对基础研究和前沿技术都有着广泛的应用,例如真空波动的探测和纳米结构表面的表征.近几年,由于量子科技的快速发展,交变电磁力的测量已经取得了很大进展,例如利用原子传感器,交流力测量精度已经提高了几个数量级;但是高精度的静态电磁力的测量还亟待提高.本文基于二维光晶格中原子形成的量子物质波,通过倒格矢空间,对静态电磁力进行了精密测量.光晶格将原子实空间的运动和倒空间的动力学分离开,并且提供了校准物质波波矢的基准.光场力和磁场力的测量灵敏度达到2.30(8)×10^(-26) N/√Hz,在两个空间方向上,长期稳定度达到10N量级,实验达到的测量精度可以在1mm的距离感知范德瓦尔斯力.实验进一步运用原子传感器标定了系统中交流电磁力的控制精度.本研究发展的高精度微弱力测量方法为基于原子的力学量子传感技术提供了前所未有的发展空间.
作者
Xinxin Guo
Zhongcheng Yu
Fansu Wei
Shengjie Jin
Xuzong Chen
Xiaopeng Li
Xibo Zhang
Xiaoji Zhou
郭新新;俞钟承;魏凡粟;金圣杰;陈徐宗;李晓鹏;张熙博;周小计(State Key Laboratory of Advanced Optical Communication System and Network,School of Electronics,Peking University,Beijing 100871,China;State Key Laboratory of Surface Physics,Key Laboratory of Micro and Nano Photonic Structures(MOE),and Department of Physics,Fudan University,Shanghai 200433,China;Institute for Nanoelectronic Devices and Quantum Computing,Fudan University,Shanghai 200433,China;Shanghai Qi Zhi Institute,AI Tower,Xuhui District,Shanghai 200232,China;Shanghai Research Center for Quantum Sciences,Shanghai 201315,China;International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China;Institute of Advanced Functional Materials and Devices,Shanxi University,Taiyuan 030031,China)
基金
supported by the National Program on Key Basic Research Project of China (2018YFA0305601, 2021YFA0718301
2021YFA1400900)
the National Natural Science Foundation of China (61727819, 11934002, and 11874073)
Shanghai Municipal Science and Technology Major Project (2019SHZDZCX01)
the Chinese Academy of Sciences Priority Research Program(XDB35020100)
the Science and Technology Major Project of Shanxi (202101030201022)
the Space Application System of China Manned Space Program