期刊文献+

中证白酒指数不同波动下的在险价值——基于GARCH族模型和加权历史模拟法

The value at risk under different fluctuations of China security liquor index: based on GARCH family model and weighted historical simulation method
下载PDF
导出
摘要 选取中证白酒指数1550天收盘价数据,基于T分布和广义误差分布(GED)GARCH族模型,对比发现GED分布下CGARCH-M模型能够体现收益率的非正态性、异方差性和波动率杠杆效应,对中证白酒指数收益率拟合效果更优;利用加权历史模拟法和CGARCH-M-GED模型对指数在险价值进行计算,发现低波动期和不稳定波动期加权历史模拟法易高估市场风险,在高波动期模型无效;根据预测失败率和Kupiec检验结果,非对称GARCH模型在各波动时期均能得到中证白酒指数更优的风险预测效果. Selecting the closing price data of China Security Liquor Index for 1550 days and based on T-distribution and GARCH family models, it is found that CGARCH-Mean model under Generalized error distribution(GED) can reflect the abnormality, heteroscedasticity and volatility leverage effect of return rate. The model has a better fitting effect on the yield of China Security liquor index. By aid of the weighted historical simulation method and CGARCH-M-GED model, its value at risk is calculated. It is found that the weighted historical simulation method is easy to overestimate the market risk in low fluctuation period and unstable fluctuation periods, yet it is invalid in high fluctuation periods. According to the prediction failure rate and Kupiec test, the asymmetrical GARCH model can get better risk prediction effect of China Security Liquor Index in each fluctuation period.
作者 樊鸿杰 汪凯 朱艳玲 FAN Hongjie;WANG Kai;ZHU Yanling(School of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Bengbu,Anhui 233030,China)
出处 《内江师范学院学报》 CAS 2022年第12期63-70,共8页 Journal of Neijiang Normal University
基金 国家自然科学基金青年项目(71803001) 安徽省高校优秀拔尖人才培育资助项目(gxyq ZD2019031)。
关键词 中证白酒指数 在险价值 非对称GARCH模型 加权历史模拟法 China security liquor index value at risk asymmetric GARCH model weighted historical simulation method
  • 相关文献

参考文献5

二级参考文献66

  • 1姚京,李仲飞.VaR估计中的模型风险——检验方法与实证研究[J].管理评论,2005,17(10):3-7. 被引量:6
  • 2刘庆富,仲伟俊,梅姝娥.基于VaR-GARCH模型族的我国期铜市场风险度量研究[J].系统工程学报,2006,21(4):429-433. 被引量:36
  • 3周杰,刘三阳.条件自回归极差模型与波动率估计[J].数量经济技术经济研究,2006,23(9):141-149. 被引量:23
  • 4魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验[J].金融研究,2007(07A):138-150. 被引量:43
  • 5Andersen, T. G. , T. Bollerslev, and S. Lange, Forecasting Financial Market Volatility : Sample Frequency vis -a -vis Forecast Horizon [J], Journal of Empirical Finance. 1999, 6 (5): 457-477.
  • 6Bates, D. , The Crash of 87: Was It Expected? The Evidence from Options Markets [J], The Journal of Finance. 1991, 46 (3): 1009-1044.
  • 7Black F. , and M. Scholes, The Pricing of Options and Corporate Liabilities[J], Journal of Political Economy. 1973, 81 (3) : 637-654.
  • 8Blair, B. J. , S. H. Poon, and S. J. Taylor, Forecasting S&P 100 Volatility : The Incremental Information Content of Implied Volatilities and High - Frequency Index Returns [J], Journal of Econometrics. 2001, 105 (1): 5-26.
  • 9Bollerslev, T. , Generalized Autoregressive Conditional Heteroskedasticity [J], Journal of Econometrics. 1986, 31 (3): 307-28.
  • 10Canina, L. , and S. Figlewski, The Informational Content of Implied Volatility [J], Review of Financial Studies. 1993, 6 (3): 659-681.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部