期刊文献+

一类二阶有理差分方程的解的渐近性

Asymptotic Behavior of Solutions for a Class of Second-order Rational Difference Equation
下载PDF
导出
摘要 本文使用Routh-Hurwitz判别法和Schur-Cohn判别法、有理差分方程的动力学理论等研究了二阶有理差分方程X_(n+1)=ax_(n)+x_(n-1)^(2)/(bx_(n)+cx_(n-1)+d),n=0,1,2,……的解{x_(n)}_(n=-1)^(∞)的渐近性,其中a,b,c,d∈R且b,c,d不同时为0,初始值x_(-1),x_(0)∈R,并由a,b,c,d的不同取值得到不同解的渐近性,同时给出平衡解是汇点、排斥点、鞍点、非双曲点等的充分条件。 We study the asymptotic behavior of the solution of the second-order rational difference equation X_(n+1)=ax_(n)+x_(n-1)^(2)/(bx_(n-1))(n=0,1,2,……,α,b,c,d∈R,b,c,d are not all zero,x_(-1),x_(0)∈R)by the different methods:the Routh Hurwitz discriminant method and Schur Cohn discriminant method and the dynamic theorem of the difference equation.From the different values of α,b,c,d∈R,the asymptotic properties of different solutions are obtained,and the sufficient conditions for the equilibrium solution to be a sink point,a repulsive point,a saddle point and a non hyperbolic point are given.
作者 王丽 全卫贞 周敬人 黄日娣 WANG Li;QUAN Wei-zhen;ZHOU Jing-ren;HUANG Ri-di(Zhanjiang Preschool Education College,Zhanjiang,Guangdong 524037;Lingnan Normal University,Zhanjiang,Guangdong 524037)
出处 《呼伦贝尔学院学报》 2022年第5期95-99,106,共6页 Journal of Hulunbuir University
基金 2020年度广东省普通高校特色创新项目“高阶差分方程的动力学和应用”(2020KTSCX351) 2019年度广东省高等职业教育教学改革研究与实践项目“小学数学人文课堂教学实践的研究”(GDJG2019460)。
关键词 有理差分方程 Routh-Hurwitz判别法和Schur-Cohn判别法 渐近性 rational difference equation Routh Hurwitz method and Schur Cohn discriminant method asymptotic behavior
  • 相关文献

参考文献1

二级参考文献8

  • 1Camouzis E, Ladas G. Dynamics of third order ra- tional difference equations: with open problems and eonjectures[M]. Boca Raton: Chapman and Hall/ CRC,2007.
  • 2Dehghan M, Mazrooei-Sebdani R. Dynamics of a high-order rational difference equation [J]. ApplMath Comput, 2006,178:345.
  • 3Grove L A,Ladas G. Periodicities in nonlinear differ- ence equations[M]. Boca Raton: Chapman and Hall/CRC, 2005.
  • 4Kocic V,Stutson D. Global behavior of solutions of a nonlinear second-order difference equation[J] . J Math Anal Appl, 2000,246:608.
  • 5Kulenovic M R S,Ladas G. Dynamics of second order rational difference equations: with open problems and conjectures[M]. Boca Raton: Chapman and Hall/CRC, 2001.
  • 6Sedaghat H. Global behaviours of rational difference equations of orders two and three with quadratic terms[J]. J Differ Eq Appl, 2009,15:215.
  • 7Sedaghat H. On third-order rational difference equa- tions with quadratic terms[J]. J Differ Equ Appl, 2008,14:889.
  • 8张聪,李洪旭.一类高阶差分方程的全局渐进稳定性(英文)[J].四川大学学报(自然科学版),2010,47(5):977-980. 被引量:5

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部