摘要
针对目标跟踪算法容易受到背景干扰的问题,提出一种基于低秩约束的逆向联合稀疏跟踪算法。该算法对目标模板和候选模板进行空间重叠分块,对目标模板施加低秩约束,降低杂乱背景的影响,再以候选模板构建视觉子字典联合稀疏表示候选模板。在粒子框架下采取三步打分法评价候选模板,并提出局部模板更新机制,以避免局部遮挡引起的跟踪漂移。实验结果表明,该算法在旋转、快速运动、遮挡、尺度变化和背景散乱等情况下均取得较好的跟踪性能。
The present object tracking methods are often interfered by scattered backgrounds,a reverse joint sparse object tracking algorithm via low-rank constraint was proposed to solve this problem.In the proposed method,the object templates were constructed by blocking processing,and then the low-rank constraints were imposed on these templates.After that,a three-step evaluation system was proposed in the particle framework.Then,a local template updating mechanism was adopted to avoid the occlusion interference.Experimental results verified that the method achieved good tracking performance in occlusion,rotation,motion blur,and scattered background.
作者
陈颖频
孔俊雅
余超群
林晨
蒋旻佚
罗崇淼
虞虹玲
CHEN Yingpin;KONG Junya;YU Chaoqun;LIN Chen;JIANG Minyi;LUO Chongmiao;YU Hongling(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China;School of Physics and Information Engineering,Minnan Normal University of China,Zhangzhou 363000,China)
出处
《探测与控制学报》
CSCD
北大核心
2022年第6期23-33,共11页
Journal of Detection & Control
基金
福建省自然科学基金项目(2020J05169)
福建省自然科学基金项目(2020J01816)
福建省教育厅中青年教师教育科研项目(JAT190393)
闽南师范大学教改课题项目(202211)。
关键词
逆向联合稀疏表示
l_(2
1)范数
局部模板更新
低秩约束
判别式打分
reverse sparse representation
l_(2,1)norm
local template updating mechanism
low-rank constraint
discriminant scoring