期刊文献+

基于小波旁瓣相消器的轴承故障特征提取 被引量:1

Bearing Fault Feature Extraction Based on Wavelet Generalized Sidelobe Canceller
下载PDF
导出
摘要 为解决强背景噪声下声信号提取的轴承故障特征不显著问题,提出一种基于小波旁瓣相消器的故障特征提取方法。该方法利用小波滤波器组将含噪故障轴承声信号变换到小波域,进行小波域阵列广义旁瓣相消自适应波束形成,再通过小波滤波器组重构增强后的故障轴承信号,最后对重构增强后的信号进行包络解调并提取故障特征频率进行故障诊断。实验结果表明,该方法能够在强背景噪声下有效提取滚动轴承故障特征,并且相较于传统的延时求和波束形成器具有更好的降噪和故障特征增强效果。 In order to solve the problem of insignificant bearing fault features extracted from acoustic signals under strong background noise, a fault feature extraction method based on wavelet beamforming is proposed.This method uses a wavelet filter bank to transform the acoustic signal of a noisy faulty bearing into the wavelet domain and performs an array of wavelet domain generalized sidelobe cancellation adaptive beamforming, and then reconstructs the enhanced fault through the wavelet filter bank bearing acoustic signal, and finally envelops demodulation of the reconstructed and enhanced signal and extract the fault characteristic frequency for fault diagnosis.The experimental results show that the method can effectively extract the fault features of rolling bearings under strong background noise, and has better noise reduction and fault feature enhancement effects than the traditional time-delay summation beamformer.
作者 苏润凡 廖爱华 胡定玉 师蔚 高伟民 丁亚琦 SU Run-fan;LIAO Ai-hua;HU Ding-yu;SHI Wei;GAO Wei-min;DING Ya-qi(School of Urban Railway Transportation,Shanghai University of Engineering Science,Shanghai 201620,China;Shanghai Engineering Research Center of Railway Noise and Vibration Control,Shanghai 201620,China;Vehicle Branch,Shanghai Metro Maintenance&Support Co.,Ltd.,Shanghai 200235,China)
出处 《测控技术》 2022年第12期29-35,共7页 Measurement & Control Technology
基金 国家自然科学基金青年科学基金项目(51605274) 上海市地方院校能力建设项目(20030501000)。
关键词 轴承故障诊断 声学诊断 小波滤波器组 波束形成 旁瓣相消技术 bearing fault diagnosis acoustic diagnosis wavelet filter bank beam forming generalized sidelobe canceller technology
  • 相关文献

参考文献7

二级参考文献58

  • 1鄢社锋,马远良.基于二阶锥规划的任意传感器阵列时域恒定束宽波束形成[J].声学学报,2005,30(4):309-316. 被引量:54
  • 2王冬霞,殷福亮.联合波束形成与谱减法的麦克风阵列语音增强算法[J].大连理工大学学报,2006,46(1):121-126. 被引量:7
  • 3梅宏斌.液动轴承的振动监测与诊断[M].北京:机械工业出版社,1995..
  • 4孙冬青.滚动轴承表面损伤故障微机诊断系统[M].吉林工学院机械系,1998..
  • 5孙冬青,滚动轴承表面损伤故障微机诊断系统,1998年
  • 6梅宏斌,滚动轴承的振动监测与诊断,1995年
  • 7屈梁生,机械故障诊断学,1986年
  • 8Brandstein M, Ward D.Microphone arrays: signal process- ing techniques and applications[M].[S.l].Springer, 1996.
  • 9Yan S F, Ma Y L.A unified framework for designing FIR filters with arbitrary magnitude and phase response[J]. Digital Signal Process, 2004, 14 (6) : 510-522.
  • 10Duan Huiping,Ng Boon Poh,Meng Chong,et al.Broad- band Beamforrning Using TDL-Form IIR filters[J].IEEE Transactions on Signal Processing, 2007,55 (3) : 990-1002.

共引文献47

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部