期刊文献+

基于特征融合与抗遮挡的卫星视频目标跟踪方法 被引量:5

Feature-fusion and anti-occlusion based target tracking method for satellite videos
下载PDF
导出
摘要 卫星视频中的目标易受到遮挡和复杂环境干扰等影响,造成对目标的运动状态估计不够准确,导致目标跟踪失败。基于此,在核相关滤波(KCF)算法的基础上设计2种算法提高目标跟踪的成功率,实现鲁棒性的目标跟踪。通过提取目标的方向梯度直方图(HOG)特征、灰度特征和高斯曲率特征表述目标的外观模型;联合响应图的峰值和平均峰值相关能量(APCE)对目标的响应图进行自适应加权融合,并将融合后的响应图峰值作为置信度对目标的模型进行自适应更新;通过使用卡尔曼滤波的方法对遮挡的目标进行位置预测,当目标遮挡结束时,对目标进行重新跟踪,解决卫星视频中目标被遮挡的问题。大量实验结果表明:所改进的相关滤波算法对卫星视频中的目标跟踪,尤其是在复杂环境、目标被遮挡及场景光照发生变化的情况下,具有良好的效果,并且在目标跟踪的精度和成功率等方面都有很大的提高,为进一步对卫星视频中的目标跟踪奠定了基础。 Targets in satellite videos are susceptible to occlusion and interference from complex environments,resulting in inaccurate estimation of the target motion state,eventually leading to target tracking failure.Therefore,based on the kernelized correlation filter(KCF)algorithm,two algorithms are designed to improve the success rate of target tracking to achieve robust target tracking.Firstly,extracting the different features(HOG features,gray features and Gaussian curvature features)of the target,then adaptively weighted fusion is carried out on the correlation response of different features of the target,whose purpose is to improve the anti-interference ability of the target against complex environments;Secondly,calculating the weight according to the maximum and average peak correlation energy(APCE)of the target response patch and using it as the confidence level to adaptively update the target model;Finally,the issue of the target being occluded in satellite videos can be resolved by employing the Kalman filter method to anticipate the position of the occluded target after the occlusion of the target is over and reappears.Many experimental results show that the improved correlation filter algorithm has sound effects on target tracking,especially in complex environments,occluded targets,and illumination variation.The success rate and precision have dramatically improved,laying the foundation for further target tracking in satellite videos.
作者 刘耀胜 廖育荣 林存宝 李兆铭 杨新岩 LIU Yaosheng;LIAO Yurong;LIN Cunbao;LI Zhaoming;YANG Xinyan(Postgraduate School,Space Engineering University,Beijing 101416,China;Department of Electronic and Optical Engineering,Space Engineering University,Beijing 101416,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第12期2537-2547,共11页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61805283)。
关键词 卫星视频 相关滤波 自适应特征融合和模型更新 卡尔曼滤波 目标跟踪 satellite videos correlation filter adaptive feature fusion and model updating Kalman filter target tracking
  • 相关文献

参考文献5

二级参考文献42

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 3史光辉.像移对卫星摄影成像质量的影响[J].光学精密工程,1997,5(4):31-34. 被引量:18
  • 4何欣,任建岳,王家骐.空间光学遥感相机像移补偿速度设计[C],中国空间科学学会空间机械专业委员会学术年会论文集,1999:1-5.
  • 5http://www.wuhan-guide.com/pages/lm_2_show.asp?id=517.
  • 6Farrier M,Kamasz S R,Ma F.Megapixel image sensors with forward motion compensation for aerial reconnaissance applications[J].SPIE.2023:80-92.
  • 7Tissot J L,Vilain M,Crastes A.UNCOOLED IRFPA WITH HIGH-PERFORMANCE AND LOW-THERMAL TIME CONSTANT[J].SPIE.2004,5612:72-77.
  • 8WU Y,LIM J,and YANG M H.Online object tracking:A benchmark[C].2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Portland,USA,2013:1354-1362.
  • 9YILMAZ A,JAVED O,SHAH M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4):1-45.
  • 10DECARLO D,METAXAS D.Optical flow constraints on deformable models with applications to face tracking[J].International Journal of Computer Vision,2000,38(2):99-127.

共引文献255

同被引文献32

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部