摘要
精矿品位作为反映产品质量的重要指标之一,一直是行业内关注的重点。采用机器学习里的动态随机森林算法对铜浮选过程中的铜精矿品位进行了模拟预测。利用国内某大型铜矿选矿厂浮选流程中泡沫图像分析仪获取的泡沫特征参数及其它相关数据分析了动态随机森林算法的预测效果,结果表明,动态随机森林算法能较准确地预测下一个测量周期的铜精矿品位,可用于指导作业者及时调整作业决策,确保最终精矿品位的稳定。
As one of the important indicators reflecting product quality,concentrate grade has always been the focus of attention in the industry.The dynamic random forest algorithm in machine learning is used to simulate and predict the copper concentrate grade in copper flotation process.Using the foam characteristic parameters and other relevant data obtained by the foam image analyzer in the flotation process of a large copper concentrator in China,the prediction effect of dynamic random forest algorithm is analyzed.The results show that the dynamic random forest algorithm can accurately predict the copper concentrate grade in the next measurement cycle,and can be used to guide operators to adjust their operation decisions in time to ensure the stability of the final concentrate grade.
作者
雷雨田
王庆凯
王旭
LEI Yu-tian;WANG Qing-kai;WANG Xu(Beijing General Research Institute of Mining and Metallurgy,Beijing 100160,China;State Key Laboratory of Process Automatic in Mining and Metallurgy,Beijing 102628,China;BGRIMM Technology Group,Beijing 100160,China)
出处
《矿冶》
CAS
2022年第6期110-113,共4页
Mining And Metallurgy
基金
国家重点研发计划项目(2020YFE0201100)
甘肃省科技计划项目(20ZD7WC010)。
关键词
随机森林算法
机器学习
铜浮选
精矿品位
预测模型
random forest algorithm
machine learning
copper flotation
concentrate grade
prediction model