期刊文献+

一个2+1维时间分数阶热传导模型的精确解及其演化现象 被引量:1

Exact Solutions and Evolution Phenomenon of a (2+1) Dimensional Time Fractional Heat-Conduction Model
原文传递
导出
摘要 通过一种半固定式的变量分离法研究了一个2+1维的时间分数阶热传导模型,并在Bessel方程的解及其相关性质的帮助下,获得了该模型的两类精确解的一般表达式.在不同的初值条件和边界条件下,给出了相应的特解形式,然后通过解的三维坐标图形直观地展示了解随空间变量演化的物理学现象,从而揭示了模型所蕴含的温度在热传导过程中的变化规律. A 2+1-dimensional time fractional heat-conduction model is studied by using a separation method of semi-fixed variable.With the help of the solutions of the Bessel equation and their relevant properties, the general expressions of two kinds of exact solutions of the model are obtained.Under different initial value conditions and boundary conditions, the forms of corresponding special solutions are given, and then the physical phenomena evolving with spatial variables are intuitively illustrated by 3 D-graphs, so as to reveal the variation law of temperature in the heat-conduction process which contains the model.
作者 李文 芮伟国 LI Wen;RUI Weiguo(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《昆明理工大学学报(自然科学版)》 北大核心 2022年第6期189-196,共8页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(11361023) 重庆市科委基础研究与前沿探索专项项目(cstc2018jcyjAX0766)。
关键词 分数阶微分方程 热传导方程 BESSEL方程 Caputo型微分算子 分离变量法 fractional differential equation heat-conduction equation Bessel equation differential operator of Caputo type separated variable method
  • 相关文献

参考文献4

二级参考文献25

  • 1张川,陈彦晖.实测载荷谱疲劳裂纹曲线预测模型[J].机械强度,2020,42(1):50-54. 被引量:1
  • 2ZHANG Shuqin.Monotone method for initial value problem for fractional diffusion equation[J].Science China Mathematics,2006,49(9):1223-1230. 被引量:7
  • 3孙斌,周云龙,关跃波,洪文鹏.气液两相流压差波动信号小波去噪中阈值规则的确定[J].信号处理,2006,22(1):96-99. 被引量:8
  • 4MILLER K S,ROSS B. An introduction to the fractional calculus and fractional differential equation [ M ]. New York:Wiley, 1993.
  • 5KILLBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and application of fraction differential equation [ M ]//North - Holland Mathematic Studies 204. Amsterdam : Elsevier Science B V ,2006.
  • 6DELBOSCO D, RODINO L. Existence and uniqueness for a nonlinear fractional differential equation [ J ]. J Math Anal Appl, 1996,204 : 609 -625.
  • 7SALEM H A H. On the existence of continuous solutions for a singular system of nonlinear fractional differential equations [ J ]. Appl Math Comput,2008,198:445-452.
  • 8SU X. Boundary value problem for a coupled system of nonlinear fractional differential equations [ J ]. Appl Math Lett,2009, 22:64-69.
  • 9AHMAD B, NIETO J J. Existence results for a coupled system of nonlinear fractional differential equations with three - point boundary conditions[J]. Comput Math Appl,2009 ,58 :1 $5g-1 845.
  • 10BAI Z, LV H. Positive solutions for boundary value problem of nonlinear fractional differential equation[ J ]. J Math Anal Ap- pl, 2005,311:495-505.

共引文献26

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部