期刊文献+

二氧化钛基材料光催化降解VOCs的研究进展 被引量:7

Research advancements in the use of TiO_(2)-based materials for the photocatalytic degradation of volatile organic compounds
下载PDF
导出
摘要 挥发性有机污染物(VOCs)大量排放导致的人体健康和环境问题已引起广泛关注,如何高效环保地去除VOCs一直是催化化工行业领域的热点和难题之一.光催化氧化技术(PCO)被认为是有效的环境污染物治理方法之一.TiO_(2)作为研究时间最长的光催化剂,具有成本效益高、稳定性好和光催化降解能力强等优点.然而,无法利用可见光和光激发电荷载流子分离效率低等瓶颈问题始终制约着其进一步发展.通过改性来克服TiO_(2)固有限制和提高TiO_(2)光催化氧化降解VOCs能力势在必行,立足于TiO_(2)光催化去除VOCs的基本原理,面向影响光催化反应的关键因素,从掺杂、半导体复合、缺陷工程、晶面工程、载体吸附和形貌调控等几个方面出发对近年TiO_(2)基材料设计及其在光催化降解VOCs领域应用的研究进行了系统的归纳和总结,并对如何进一步改进基于TiO_(2)的光催化氧化VOCs技术提出展望. Human health and environmental concerns caused by the massive volatile organic compound(VOC)emission have attracted widespread attention recently.VOCs are toxic and difficult to eliminate;moreover,they come from a wide variety of sources.Efficient and environmentally friendly removal of VOCs has always been one of the primary concerns in the catalytic chemical industry.Presently,the commonly used methods for VOC removal include absorption-adsorption,biodegradation,thermal catalysis,and membrane separation.However,these methods have several drawbacks,such as high initial investment,expensive materials,high energy consumption,low catalyst efficiency,and incomplete treatment.Photocatalytic oxidation(PCO)technology is considered to be one of the effective methods of environmental pollution control.PCO can directly use solar energy to remove various environmental pollutants.Thus,PCO has inherent advantages such as low consumption,environmental protection,no secondary pollution,and convenience.Photocatalyst is a core step in the PCO process,and as aphotocatalyst studied for the longest time,titanium dioxide(TiO_(2))has the advantages of high cost-effectiveness,good stability,strong photocatalytic degradation capability,and producing no harmful byproducts.However,bottleneck problems such as the inability to utilize visible light and low separation efficiency of photoexcited charge carriers have always restricted its advancement.Thus,the inherent limitations of TiO_(2)need to be overcome,and its capability to degrade VOCs via PCO needs to be improved.These modifications can improve the PCO performance through the following mechanisms:(1)By introducing electron trapping levels in the bandgap,which will create some defects in the TiO_(2)lattice and help trap charge carriers,and(2)by slowing down the electron carrier loading rate to increase VOC degradation.Thus,considering the basic principle of TiO_(2)photocatalytic removal of VOCs,this study focuses on the key factors affecting the photocatalytic reaction.Beginning with aspects such as metal/nonmetal doping,semiconductor recombination,defect engineering,crystal plane engineering,carrier adsorption,and morphology control,the research on the design of TiO_(2)-based materials and their application in the field of photocatalytic degradation of VOCs in recent years are systematically summarized;moreover,a brief introduction of its control parameters and applications in practical engineering and prospects on how to further improve the use of TiO_(2)-based materials for the PCO technology of VOCs is provided.This review will provide parameter support and optimization suggestions for the research on the degradation of VOCs by TiO_(2)-based photocatalytic materials to help researchers lay the foundation for future research.
作者 马晓佳 唐学静 靳凤先 沈伯雄 郭盛祺 MA Xiao-jia;TANG Xue-jing;JIN Feng-xian;SHEN Bo-xiong;GUO Sheng-qi(School of Energy and Environmental Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《工程科学学报》 EI CSCD 北大核心 2023年第4期590-601,共12页 Chinese Journal of Engineering
基金 国家自然科学基金资助项目(21701125) 中国博士后科学基金资助项目(2021T140512,2020M680869)。
关键词 TiO_(2) 改性 光催化 室内外污染 挥发性有机污染物 TiO_(2) modification photocatalysis indoor and outdoor pollution VOCs
  • 相关文献

参考文献10

二级参考文献97

共引文献98

同被引文献70

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部