摘要
方面级情感分析是细粒度情感分析的一个基本子任务,旨在预测文本中给定方面或实体的情感极性。语义信息、句法信息及其交互信息对于方面级情感分析是极其重要的。该文提出一种基于图卷积和注意力的网络模型(CA-GCN)。该模型主要分为两部分,一是将卷积神经网络结合双向LSTM获取的丰富特征表示与图卷积神经网络掩码得到的方面特征表示进行融合;二是采用两个多头交互注意力融合方面、上下文和经图卷积神经网络得到的特征信息,而后接入多头自注意力来学习信息交互后句子内部的词依赖关系。与ASGCN模型相比,该模型在三个基准数据集(Twitter、Lap14和Rest14)上准确率分别提升1.06%、1.62%和0.95%,F_(1)值分别提升1.07%、2.60%和1.98%。
Aspect-level sentiment analysis is a fundamental subtask of fine-grained sentiment analysis to predict the sentiment polarities of the given aspects or entities in text.The semantic information,syntactic information and their internteractive information are crucial to aspect-level sentiment analysis.This paper proposes a CA-GCN model based on graph convolution and attention.The model is mainly divided into two parts.First,the model integrates the rich feature representation obtained by CNN and Bi-LSTM with the aspect-oriented features obtained through graph convolution.Second,the model applied two multi-head interactive attention to integrate the aspect,the context and the feature information obtained by the graph convolution,which is then fed into a multi-head self-attention to learn the dependency relationship among words in the sentence.Compared with the ASGCN model,the accuracy of the model on the datasets of Twitter,Lap14 and Rest14 is improved by 1.06%,1.62%and 0.95%,and the F_(1) score is improves by 1.07%,2.60%and 1.98%,respectively.
作者
闫金凤
邵新慧
YAN Jinfeng;SHAO Xinhui(College of Science,Northeastern University,Shenyang,Liaoning 110000,China)
出处
《中文信息学报》
CSCD
北大核心
2022年第10期135-144,共10页
Journal of Chinese Information Processing
关键词
特定方面情感分析
图卷积网络
注意力机制
aspect-level sentiment analysis
graph convolutional network(GCN)
attention mechanism