摘要
卷积神经网络(CNN)在图像处理方面相对于神经网络有着更好的表现,基于CNN能够更加准确便捷识别图像类信息;同时消防安全体系的构成在工业生产、电力发电以及民用建筑等领域愈加重要,其重要性不可忽视。研究的重点是如何利用CNN的图像处理和识别的优势,将其应用于图像型探测器,从而实现构建更加优化的火灾自动报警系统。
Convolutional neural network(CNN) has a better performance than the neural network in image processing,which can identify image information more accurately and conveniently based on CNN.At the same time,the composition of the fire safety system is becoming more and more important in industrial production,electric power generation,and civil construction,and its importance can not be ignored.The focus of research is on how to use the advantages of convolutional neural networks in image processing and recognition,and apply them to image detectors,so as to realize the construction of a more optimized automatic fire alarm system.
作者
马奇
冯欧阳
MA Qi;FENG Ouyang(Tongji University Architectural Design and Research Institute(Group)Co.,Ltd.,Shanghai 200092,China;State Grid Zhejiang Electric Power Co.,Ltd.,Rui'an Power Supply Company,Wenzhou 325205,China)
出处
《电气应用》
2022年第11期36-41,共6页
Electrotechnical Application