期刊文献+

基于多视角低秩稀疏子空间聚类的气候分区 被引量:1

Climate Zoning Via Multi-View Low-Rank Sparse Subspace Clustering
下载PDF
导出
摘要 选取中国661个气象台站的部分气象数据,采用多视角低秩稀疏子空间聚类方法对其进行区划。先计算相对湿度、大气压、日照时数、日平均温度和气温日较差之间的最大信息系数,结果表明所选取的气象要素不存在较强的相关性,从而有利于多视角聚类。再分别基于线性核函数和高斯核函数,提出对所选气象台站进行多视角低秩稀疏子空间聚类的方法。最后将所提方法与k均值聚类进行实验对比,结果表明,上述方法对中国气候分区更有效。 This paper selected part of the meteorological datafrom 661 meteorological stations in China,and employed a multi-view low-rank sparse subspace clustering method to partition them.Firstly,the maximum information coefficients were calculated among relative humidity,atmospheric pressure,sunshine hours,daily average temperature and diurnal temperature range.The results show that the chosen meteorological elements do not have strong correlation,which is conducive to multi-view clustering.Then,based on the linear kernel function and the Gaussian kernel function respectively,a method of multi-view low-rank sparse subspace clustering was proposed to classify the given meteorological stations.Finally,the experimental comparison was made between the proposed method and k-means clustering,and the experimental results validate the former is more effective in performing the climate zoning of China.
作者 史加荣 胡宇骄 SHI Jia-rong;HU Yu-jiao(School of Science,Xi'an University of Architecture and Technology,Xi'an Shanxi 710055,China;State Key Laboratory of Green Building in Western China,Xi'an Shanxi710055,China)
出处 《计算机仿真》 北大核心 2022年第11期344-349,共6页 Computer Simulation
基金 “十三五”国家重点研发计划项目(2018YFB1502902) 陕西省自然科学基金(2021JM-378)。
关键词 气候分区 多视角 低秩表示 稀疏子空间聚类 最大信息系数 Climate zoning Multi-view Low-rank representation Sparse subspace clustering Maximum information coefficient
  • 相关文献

参考文献4

二级参考文献131

  • 1张永领,丁裕国,高全洲,王兆礼.一种基于SVD的迭代方法及其用于气候资料场的插补试验[J].大气科学,2006,30(3):526-532. 被引量:9
  • 2侯威,廉毅,封国林.基于搜索平均法的气象观测数据的非线性去噪[J].物理学报,2007,56(1):589-596. 被引量:7
  • 3谢炯光,秦冰冰,王静渊.奇异值分解方法在季降水预测中的应用[J].气象学报,1997,55(1):117-123. 被引量:32
  • 4周家斌,黄嘉佑.近年来中国统计气象学的新进展[J].气象学报,1997,55(3):297-305. 被引量:31
  • 5Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 6Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 7Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 8Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 9Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 10Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.

共引文献99

同被引文献15

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部