期刊文献+

基于注意力残差网络的跨模态医学图像配准 被引量:2

Cross-modality Medical Image Registration Based on Attention Residual Network
下载PDF
导出
摘要 针对2D-3D医学图像配准方法时间长且容易陷入局部极值的问题,提出一种将注意力机制与残差网络融合的跨模态图像配准方法,使用深度残差网络自动提取图像特征,预测配准变换参数,在卷积块中嵌入混合域的注意力机制,提高网络对重要特征的关注度。根据变换参数的特点,设计分组回归的方式提高配准精度。实验结果表明,上述方法预测位移误差均值为0.07mm,角度误差均值为0.04°,优于其方法;配准时间仅需40ms,远低于传统方法。所提配准方法避免了传统方法循环迭代的过程,有效提高配准效率,满足医学图像配准的实时性和精度需求。 In order to solve the problem that the 2 D-3 D medical image registration method is time-consuming and is easy to fall into the local extremum,a cross-modality image registration method combining attention mechanism and residual network is proposed.A deep residual network was used to automatically extract image features,and then predict the registration transformation parameters,in which the attention mechanism of the mixed domain was embedded in the convolution block to improve the attention of important features.In addition,according to the characteristics of the transformation parameters,a group regression method was designed to improve registration accuracy.The experimental results showed that the mean translation error of the proposed method is 0.07 mm and the mean angular error is 0.04°,which was superior to other methods.The time consumption was less than 40 ms,which was much less than the traditional method.The proposed method is free of the loop iteration in traditional methods and effectively improves the registration efficiency,so it meets the real-time and accuracy requirements of medical image registration.
作者 李文举 孔德卿 曹国刚 戴翠霞 LI Wen-ju;KONG De-qing;CAO Guo-gang;DAI Cui-xia(School of Computer Science&Information Engineering,Shanghai Institute of Technology,Shanghai 201418,China;School of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
出处 《计算机仿真》 北大核心 2022年第11期224-229,共6页 Computer Simulation
基金 国家自然科学基金(62175156,61675134,81827807) 上海市科委科技创新行动计划(19441905800) 温州医科大学重点实验室开放项目(K181002)。
关键词 图像分析 二维-三维配准 深度学习 残差网络 注意力机制 Image analysis 2D-3D registration Deep learning Residual network Attention mechanism
  • 相关文献

参考文献4

二级参考文献35

  • 1李欣,周凌宏,甄鑫,卢文婷.2D/3D刚性图像配准在肿瘤放疗计划中的应用[J].中国医学物理学杂志,2011,28(2):2510-2514. 被引量:1
  • 2张翼,王满宁,宋志坚.脊柱手术导航中分步式2D/3D图像配准方法[J].计算机辅助设计与图形学学报,2007,19(9):1154-1158. 被引量:11
  • 3P Markelj,D Tomaevi,B Likar. A review of 3D-2D registration methods for image-guided interventions[J].{H}Medical Image Analysis,2012,(03):642-661.
  • 4P Markelj,F Pernu,S A Pawiro. Validation for 2D/3D registration I:a new gold standard data set[J].Medi-cal physics,2011,(03):1481-1490.
  • 5Barbara Rper,Nassir Navab,Wolfgang Wein. 2D/3D registration based on volume gradients[A].2005.144-150.
  • 6Jürgen Weese,Graeme P Penney,John A Little. A comparison of similarity measures for use in 2D3D medi-cal image registration[J].{H}IEEE Transactions on Medical Imaging,1998,(04):586-595.
  • 7F Maes,Dirk Vandermeulen,Paul Suetens. Comparative eval-uation of multiresolution optimization strategies for multimo-dality image registration by maximization of mutual informa-tion[J].{H}Medical Image Analysis,1999,(04):373-386.
  • 8Graeme P Penney,Everine B van de Kraats,Dejan Tomaevi. Standardized evaluation methodology for 2D-3D registration[J].IEEE Transactions on Medical Ima-ging,2005,(09):1177-1189.
  • 9I MJ van der Bom,S Klein,MStaring. Evaluation of opti-mization methods for intensity-based 2D-3D registration in x-ray guided interventions[J].SPIE Medical Imaging International Society for Optics and Photonics,2001,(23):1-15.
  • 10D L G Hill,C Studholme,D J Hawkes. An overlap invari-ant entropy measure of 3D medical image alignment[J].{H}Pattern Recognition,1999.

共引文献24

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部