期刊文献+

基于PSO-PNN算法的雷达点迹真伪鉴别方法 被引量:2

The Identification Method of True and False Plots Based On PSO-GNN Algorithm
下载PDF
导出
摘要 针对雷达目标检测后的剩余杂波,提出了一种将粒子群优化算法(PSO)与概率神经神经网络(PNN)相结合的雷达点迹真伪鉴别方法。方法可以在目标检测后进一步区分目标点迹和杂波点迹。同时,将其雷达点迹鉴别结果与BP神经网络(BPNN)对雷达点迹鉴别结果作了对比,发现上述方法的整体识别率可达91.13%,目标识别率可达93.78%,较BPNN分别提升1.55%和3.55%。结果表明,PSO-PNN能够有效鉴别雷达点迹真伪。 For the residual clutter after radar detection, a method of radar plots identification based on the combination of particle swarm optimization(PSO) and probabilistic neural network(PNN) is proposed.This method can further distinguish the target plots and clutter plots after the target detection.At the same time, compared with BP neural network(BPNN) radar plots identification results, it is found that the overall recognition rate of the proposed method can reach 91.13%, and the target recognition rate can reach 93.78%, which are 1.55% and 3.55% higher than BPNN, respectively.The results show that PSO-PNN can effectively identify the authenticity of radar plots.
作者 孟文涵 林强 MENG Wen-han;LIN Qiang(Air Force Early Warning Academy Academy,Wuhan Hubei 430019,China)
机构地区 空军预警学院
出处 《计算机仿真》 北大核心 2022年第11期11-15,共5页 Computer Simulation
关键词 雷达点迹鉴别 粒子群优化算法 概率神经网络 剩余杂波 Radar plots identification Particle swarm optimization algorithm Probabilistic neural network Residual clutter
  • 相关文献

参考文献7

二级参考文献71

  • 1张超,陈建军.基于EMD降噪和谱峭度的轴承故障诊断方法[J].机械科学与技术,2015,34(2):252-256. 被引量:21
  • 2李元贵,乐洋.专家系统在电梯故障诊断中的应用[J].河海大学常州分校学报,2006,20(2):50-52. 被引量:3
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimiza tion[C] // Proceedings of IEEE International Confer ence on Neural Networks, Perth, WA, Australia [s. n. ], 1995:1942-1948.
  • 4Boeringer D W, Werner D H. A Comparison of Particle Swarm Optimization and Genetic Algorithms for a Phased Array Synthesis Problem[C] // Antennas and Propagation Society international Symposium, [s. 1. ]: IEEE, 2003 : 181-184.
  • 5Eberhart R C, Shi Yuhui. Comparison Between Genetic Algorithms and Particle Swarm Optimization[C] //Annual Conference on Evolutionary Programming, San Diego:[s. n. ], 1998:611-616.
  • 6Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization [C]//Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC: [s. n.], 1999: 1951-1957.
  • 7Perez Lepez J R, Basterrechea Verdeja J. Synthesis of Linear Arrays Using Particle Swarm Optimisation[C] //First European Conference on Antennas and Propagation, Nice:[s. n. ], 2006:1-6.
  • 8Li W T, Shi X W, Hei Y Q. An Improved Particle Swarm Optimization Algorithm for Pattern Synthesis of Phased Arrays [C] // Progress in Eleetromagnetics Research, [s. 1. ] : Es. n. 1, 2008 : 319-332.
  • 9Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 10Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86

共引文献393

同被引文献23

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部