摘要
在电力系统的经济调度中,如何合理利用电力负荷的过去和现在来推测其未来价值,具有非常长远的社会经济价值.短期电力负荷数据具有明显的时间特征,传统的深度模型越来越多地应用于该领域.然而,深度模型可能存在梯度爆炸或梯度消失,为此,提出了一种注意力机制优化长短期记忆网络的短期负荷预测模型.该模型将长短期记忆网络单元中的激活函数改进为加权激活函数组,并加入注意力机制以提高预测精度.
In the economic dispatch of power system,how to reasonably use the past and present of power load to speculate its future value has very long-term social-economic value.Short-term power load data has obvious temporal characteristics,and the traditional deep model is more and more applied in this field.An improved AM-LSTM short-term load forecasting model is presented.The model improves the activation function in LSTM unit into weighted activation function group,and adds attention mechanism to improve the prediction accuracy.
作者
王健
易姝慧
刘浩
王春枝
刘俭
汪根荣
WANG Jian;YI Shuhui;LIU Hao;WANG Chunzhi;LIU Jian;WANG Genrong(China Electric Power Research Institute,Wuhan 430074,China;School of Computer Science,Hubei University of Technology,Wuhan 430068,China)
出处
《中南民族大学学报(自然科学版)》
CAS
北大核心
2023年第1期73-81,共9页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家电网科技资助项目(SGDK0000JLJS1907914)。
关键词
短期负荷预测
注意力机制
长短期记忆网络
short-term load forecasting
attention mechanism
long short-term memory network